Christian R Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4312700/publications.pdf

Version: 2024-02-01

135 papers

14,996 citations

44069 48 h-index 20961 115 g-index

144 all docs

144 docs citations

times ranked

144

20265 citing authors

#	Article	IF	CITATIONS
1	Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 2010, 466, 368-372.	27.8	1,803
2	Structural Variation of Chromosomes in Autism Spectrum Disorder. American Journal of Human Genetics, 2008, 82, 477-488.	6.2	1,641
3	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
4	Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders. American Journal of Human Genetics, 2014, 94, 677-694.	6.2	819
5	Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nature Neuroscience, 2017, 20, 602-611.	14.8	691
6	Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics, 2019, 51, 1207-1214.	21.4	641
7	Contribution of SHANK3 Mutations to Autism Spectrum Disorder. American Journal of Human Genetics, 2007, 81, 1289-1297.	6.2	604
8	Whole-genome sequencing of quartet families with autism spectrum disorder. Nature Medicine, 2015, 21, 185-191.	30.7	457
9	Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing. American Journal of Human Genetics, 2013, 93, 249-263.	6.2	429
10	Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genetics in Medicine, 2018, 20, 435-443.	2.4	404
11	Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder. JAMA - Journal of the American Medical Association, 2015, 314, 895.	7.4	352
12	Rare Copy Number Variation Discovery and Cross-Disorder Comparisons Identify Risk Genes for ADHD. Science Translational Medicine, 2011, 3, 95ra75.	12.4	304
13	Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine. Npj Genomic Medicine, 2016, 1 , .	3.8	295
14	SHANK1 Deletions in Males with Autism Spectrum Disorder. American Journal of Human Genetics, 2012, 90, 879-887.	6.2	292
15	FORGE Canada Consortium: Outcomes of a 2-Year National Rare-Disease Gene-Discovery Project. American Journal of Human Genetics, 2014, 94, 809-817.	6.2	219
16	Genome-wide characteristics of de novo mutations in autism. Npj Genomic Medicine, 2016, 1, 160271-1602710.	3.8	200
17	Disruption at the <i>PTCHD1</i> Locus on Xp22.11 in Autism Spectrum Disorder and Intellectual Disability. Science Translational Medicine, 2010, 2, 49ra68.	12.4	178
18	A Discovery Resource of Rare Copy Number Variations in Individuals with Autism Spectrum Disorder. G3: Genes, Genomes, Genetics, 2012, 2, 1665-1685.	1.8	175

#	Article	IF	CITATIONS
19	A Comprehensive Workflow for Read Depth-Based Identification of Copy-Number Variation from Whole-Genome Sequence Data. American Journal of Human Genetics, 2018, 102, 142-155.	6.2	156
20	Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Human Molecular Genetics, 2008, 17, 4045-4053.	2.9	155
21	Rare Copy Number Variations in Adults with Tetralogy of Fallot Implicate Novel Risk Gene Pathways. PLoS Genetics, 2012, 8, e1002843.	3.5	149
22	Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nature Genetics, 2014, 46, 742-747.	21,4	149
23	Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Human Molecular Genetics, 2014, 23, 2752-2768.	2.9	140
24	Recommendations for the integration of genomics into clinical practice. Genetics in Medicine, 2016, 18, 1075-1084.	2.4	125
25	Pathogenic rare copy number variants in community-based schizophrenia suggest a potential role for clinical microarrays. Human Molecular Genetics, 2013, 22, 4485-4501.	2.9	120
26	Clinically relevant copy number variations detected in cerebral palsy. Nature Communications, 2015, 6, 7949.	12.8	120
27	A large data resource of genomic copy number variation across neurodevelopmental disorders. Npj Genomic Medicine, 2019, 4, 26.	3.8	118
28	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biological Psychiatry, 2022, 91, 313-327.	1.3	114
29	Copy Number Variation in Obsessive-Compulsive Disorder and Tourette Syndrome: A Cross-Disorder Study. Journal of the American Academy of Child and Adolescent Psychiatry, 2014, 53, 910-919.	0.5	111
30	Infantile Spasms Is Associated with Deletion of the MAGI2 Gene on Chromosome 7q11.23-q21.11. American Journal of Human Genetics, 2008, 83, 106-111.	6.2	108
31	Delineating the 15q13.3 microdeletion phenotype: a case series and comprehensive review of the literature. Genetics in Medicine, 2015, 17, 149-157.	2.4	103
32	Periodic reanalysis of whole-genome sequencing data enhances the diagnostic advantage over standard clinical genetic testing. European Journal of Human Genetics, 2018, 26, 740-744.	2.8	88
33	Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Molecular Psychiatry, 2021, 26, 4496-4510.	7.9	87
34	A framework for an evidence-based gene list relevant to autism spectrum disorder. Nature Reviews Genetics, 2020, 21, 367-376.	16.3	83
35	De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genetics in Medicine, 2018, 20, 172-180.	2.4	82
36	Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome. American Journal of Psychiatry, 2017, 174, 1054-1063.	7.2	77

#	Article	IF	Citations
37	A high-resolution copy-number variation resource for clinical and population genetics. Genetics in Medicine, 2015, 17, 747-752.	2.4	73
38	Detection and Characterization of Copy Number Variation in Autism Spectrum Disorder. Methods in Molecular Biology, 2012, 838, 115-135.	0.9	72
39	CHD2 haploinsufficiency is associated with developmental delay, intellectual disability, epilepsy and neurobehavioural problems. Journal of Neurodevelopmental Disorders, 2014, 6, 9.	3.1	71
40	Molecular characterization of NRXN1 deletions from 19,263 clinical microarray cases identifies exons important for neurodevelopmental disease expression. Genetics in Medicine, 2017, 19, 53-61.	2.4	70
41	15q11.2 Duplication Encompassing Only the <i>UBE3A</i> Gene Is Associated with Developmental Delay and Neuropsychiatric Phenotypes. Human Mutation, 2015, 36, 689-693.	2.5	67
42	Lethal Disorder of Mitochondrial Fission Caused by Mutations in DNM1L. Journal of Pediatrics, 2016, 171, 313-316.e2.	1.8	67
43	Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease. Npj Genomic Medicine, 2020, 5, 47.	3.8	67
44	A microcosting and cost–consequence analysis of clinical genomic testing strategies in autism spectrum disorder. Genetics in Medicine, 2017, 19, 1268-1275.	2.4	62
45	<i>PMPCA</i> mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain, 2015, 138, 1505-1517.	7.6	58
46	Copy Number Variable MicroRNAs in Schizophrenia and Their Neurodevelopmental Gene Targets. Biological Psychiatry, 2015, 77, 158-166.	1.3	58
47	Haploinsufficiency of vascular endothelial growth factor related signaling genes is associated with tetralogy of Fallot. Genetics in Medicine, 2019, 21, 1001-1007.	2.4	58
48	The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants. Cmaj, 2018, 190, E126-E136.	2.0	57
49	Uncovering obsessive-compulsive disorder risk genes in a pediatric cohort by high-resolution analysis of copy number variation. Journal of Neurodevelopmental Disorders, 2016, 8, 36.	3.1	55
50	Whole-Exome Sequencing and Targeted Copy Number Analysis in Primary Ciliary Dyskinesia. G3: Genes, Genomes, Genetics, 2015, 5, 1775-1781.	1.8	53
51	The Cardiac Genome Clinic: implementing genome sequencing in pediatric heart disease. Genetics in Medicine, 2020, 22, 1015-1024.	2.4	51
52	Mutations in RAB39B in individuals with intellectual disability, autism spectrum disorder, and macrocephaly. Molecular Autism, 2017, 8, 59.	4.9	49
53	Complex Copy Number Variation of <i>AMY1</i> does not Associate with Obesity in two East Asian Cohorts. Human Mutation, 2016, 37, 669-678.	2.5	48
54	CAOSâ€"Episodic Cerebellar Ataxia, Areflexia, Optic Atrophy, and Sensorineural Hearing Loss. Journal of Child Neurology, 2015, 30, 1749-1756.	1.4	47

#	Article	IF	CITATIONS
55	Genome Sequencing as a Diagnostic Test in Children With Unexplained Medical Complexity. JAMA Network Open, 2020, 3, e2018109.	5.9	47
56	Complete loss of the DNAJB6 G/F domain and novel missense mutations cause distal-onset DNAJB6 myopathy. Acta Neuropathologica Communications, 2015, 3, 44.	5. 2	45
57	Clinical delineation of the <i>PACS1</i> i>â€related syndromeâ€"Report on 19 patients. American Journal of Medical Genetics, Part A, 2016, 170, 670-675.	1.2	44
58	Whole-Genome Sequencing Suggests Schizophrenia Risk Mechanisms in Humans with 22q11.2 Deletion Syndrome. G3: Genes, Genomes, Genetics, 2015, 5, 2453-2461.	1.8	43
59	Microdeletions of <i>ELP4</i> Are Associated with Language Impairment, Autism Spectrum Disorder, and Mental Retardation. Human Mutation, 2015, 36, 842-850.	2.5	41
60	Genome sequencing as a platform for pharmacogenetic genotyping: a pediatric cohort study. Npj Genomic Medicine, 2017, 2, 19.	3.8	41
61	Germline and somatic mutations in <i>STXBP1</i> with diverse neurodevelopmental phenotypes. Neurology: Genetics, 2017, 3, e199.	1.9	41
62	<i>OTX2</i> mutations cause autosomal dominant pattern dystrophy of the retinal pigment epithelium. Journal of Medical Genetics, 2014, 51, 797-805.	3.2	40
63	Implication of <i>LRRC4C</i> and <i>DPP6</i> in neurodevelopmental disorders. American Journal of Medical Genetics, Part A, 2017, 173, 395-406.	1.2	40
64	The Medical Genome Initiative: moving whole-genome sequencing for rare disease diagnosis to the clinic. Genome Medicine, 2020, 12, 48.	8.2	40
65	Prospective cohort study for identification of underlying genetic causes in neonatal encephalopathy using whole-exome sequencing. Genetics in Medicine, 2018, 20, 486-494.	2.4	38
66	Indexing Effects of Copy Number Variation on Genes Involved in Developmental Delay. Scientific Reports, 2016, 6, 28663.	3.3	35
67	<i>ARHGEF9</i> disease. Neurology: Genetics, 2017, 3, e148.	1.9	35
68	A recurrent germline mutation in the <i>PIGA</i> gene causes Simpsonâ€Golabiâ€Behmel syndrome type 2. American Journal of Medical Genetics, Part A, 2016, 170, 392-402.	1.2	34
69	Care and cost consequences of pediatric whole genome sequencing compared to chromosome microarray. European Journal of Human Genetics, 2017, 25, 1303-1312.	2.8	32
70	Impact of DNA source on genetic variant detection from human whole-genome sequencing data. Journal of Medical Genetics, 2019, 56, 809-817.	3.2	32
71	De novo missense variants in RAC3 cause a novel neurodevelopmental syndrome. Genetics in Medicine, 2019, 21, 1021-1026.	2.4	32
72	Chitayat-Hall and Schaaf-Yang syndromes:a common aetiology: expanding the phenotype of <i>MAGEL2</i> -related disorders. Journal of Medical Genetics, 2018, 55, 316-321.	3.2	31

#	Article	IF	Citations
73	Development of a high-resolution Y-chromosome microarray for improved male infertility diagnosis. Fertility and Sterility, 2014, 101, 1079-1085.e3.	1.0	30
74	Prenatal growth restriction, retinal dystrophy, diabetes insipidus and white matter disease: expanding the spectrum of PRPS1-related disorders. European Journal of Human Genetics, 2015, 23, 310-316.	2.8	30
75	Epileptic Encephalopathy Caused by Mutations in the Guanine Nucleotide Exchange Factor DENND5A. American Journal of Human Genetics, 2016, 99, 1359-1367.	6.2	30
76	Impact of IQ on the diagnostic yield of chromosomal microarray in a community sample of adults with schizophrenia. Genome Medicine, 2017, 9, 105.	8.2	30
77	Shared genetic risk between eating disorder†and substance†use†related phenotypes: Evidence from genome†wide association studies. Addiction Biology, 2021, 26, e12880.	2.6	28
78	Bi-allelic mutations of <i>LONP1 </i> encoding the mitochondrial LonP1 protease cause pyruvate dehydrogenase deficiency and profound neurodegeneration with progressive cerebellar atrophy. Human Molecular Genetics, 2019, 28, 290-306.	2.9	27
79	Genome-wide rare copy number variations contribute to genetic risk for transposition of the great arteries. International Journal of Cardiology, 2016, 204, 115-121.	1.7	26
80	Estimated carrier frequency of creatine transporter deficiency in females in the general population using functional characterization of novel missense variants in the SLC6A8 gene. Gene, 2015, 565, 187-191.	2.2	25
81	Severe neurodegeneration, progressive cerebral volume loss and diffuse hypomyelination associated with a homozygous frameshift mutation in CSTB. European Journal of Human Genetics, 2017, 25, 775-778.	2.8	24
82	Carrier frequency of guanidinoacetate methyltransferase deficiency in the general population by functional characterization of missense variants in the GAMT gene. Molecular Genetics and Genomics, 2015, 290, 2163-2171.	2.1	23
83	Congenital myopathy with "corona―fibres, selective muscle atrophy, and craniosynostosis associated with novel recessive mutations in SCN4A. Neuromuscular Disorders, 2017, 27, 574-580.	0.6	23
84	Genes and Pathways Implicated in Tetralogy of Fallot Revealed by Ultra-Rare Variant Burden Analysis in 231 Genome Sequences. Frontiers in Genetics, 2020, 11, 957.	2.3	23
85	Mutations Preventing Regulated Exon Skipping in MET Cause Osteofibrous Dysplasia. American Journal of Human Genetics, 2015, 97, 837-847.	6.2	22
86	Deletion size analysis of 1680 22q11.2DS subjects identifies a new recombination hotspot on chromosome 22q11.2. Human Molecular Genetics, 2018, 27, 1150-1163.	2.9	22
87	<i>MED23</i> â€associated refractory epilepsy successfully treated with the ketogenic diet. American Journal of Medical Genetics, Part A, 2016, 170, 2421-2425.	1.2	21
88	Genome sequencing as a diagnostic test. Cmaj, 2021, 193, E1626-E1629.	2.0	20
89	Genome-wide tandem repeat expansions contribute to schizophrenia risk. Molecular Psychiatry, 2022, 27, 3692-3698.	7.9	20
90	Novel 25 kb Deletion of MERTK Causes Retinitis Pigmentosa With Severe Progression. , 2017, 58, 1736.		17

#	Article	IF	Citations
91	Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease. PLoS Genetics, 2021, 17, e1009679.	3.5	17
92	Whole-genome sequencing suggests mechanisms for 22q11.2 deletion-associated Parkinson's disease. PLoS ONE, 2017, 12, e0173944.	2.5	17
93	Complex genomic rearrangements in the dystrophin gene due to replicationâ€based mechanisms. Molecular Genetics & Genomic Medicine, 2014, 2, 539-547.	1.2	16
94	Microcephalyâ€capillary malformation syndrome: Brothers with a homozygous ⟨i⟩STAMBP⟨/i⟩ mutation, uncovered by exome sequencing. American Journal of Medical Genetics, Part A, 2016, 170, 3018-3022.	1.2	16
95	Use of clinical chromosomal microarray in Chinese patients with autism spectrum disorderâ€"implications of a copy number variation involving DPP10. Molecular Autism, 2017, 8, 31.	4.9	16
96	Genome sequencing broadens the range of contributing variants with clinical implications in schizophrenia. Translational Psychiatry, 2021, 11, 84.	4.8	16
97	De novo pathogenic variant in TUBB2A presenting with arthrogryposis multiplex congenita, brain abnormalities, and severe developmental delay. , 2017, 173, 2725-2730.		15
98	Copy number variation in fetal alcohol spectrum disorder. Biochemistry and Cell Biology, 2018, 96, 161-166.	2.0	15
99	Clinical Genetic Risk Variants Inform a Functional Protein Interaction Network for Tetralogy of Fallot. Circulation Genomic and Precision Medicine, 2021, 14, e003410.	3.6	15
100	Data sharing to improve concordance in variant interpretation across laboratories: results from the Canadian Open Genetics Repository. Journal of Medical Genetics, 2022, 59, 571-578.	3.2	14
101	Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disorders. Molecular Autism, 2014, 5, 28.	4.9	13
102	Neuropsychiatric aspects of 22q11.2 deletion syndrome: considerations in the prenatal setting. Prenatal Diagnosis, 2017, 37, 61-69.	2.3	13
103	Expanding Clinical Presentations Due to Variations in THOC2 mRNA Nuclear Export Factor. Frontiers in Molecular Neuroscience, 2020, 13, 12.	2.9	12
104	Hereditary Mucin Deficiency Caused by Biallelic Loss of Function of <i>MUC5B</i> . American Journal of Respiratory and Critical Care Medicine, 2022, 205, 761-768.	5.6	12
105	Diagnostic yield of genome sequencing for prenatal diagnosis of fetal structural anomalies. Prenatal Diagnosis, 2022, 42, 822-830.	2.3	12
106	Within-family influences on dimensional neurobehavioral traits in a high-risk genetic model. Psychological Medicine, 2022, 52, 3184-3192.	4.5	11
107	<i>HLX</i> is a candidate gene for a pattern of anomalies associated with congenital diaphragmatic hernia, short bowel, and asplenia. American Journal of Medical Genetics, Part A, 2017, 173, 3070-3074.	1.2	10
108	Genome sequencing for detection of pathogenic deep intronic variation: A clinical case report illustrating opportunities and challenges. American Journal of Medical Genetics, Part A, 2021, 185, 3129-3135.	1.2	10

#	Article	IF	Citations
109	A recurrent SHANK3 frameshift variant in Autism Spectrum Disorder. Npj Genomic Medicine, 2021, 6, 91.	3.8	9
110	De novo large rare copy-number variations contribute to conotruncal heart disease in Chinese patients. Npj Genomic Medicine, 2016, 1, 16033.	3.8	8
111	Mild Idiopathic Infantile Hypercalcemiaâ€"Part 1: Biochemical and Genetic Findings. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2915-2937.	3.6	8
112	Rare Copy Number Variants Identified Suggest the Regulating Pathways in Hypertension-Related Left Ventricular Hypertrophy. PLoS ONE, 2016, 11, e0148755.	2.5	8
113	A Chromosomal Duplication Encompassing Interleukin-33 Causes a Novel Hyper IgE Phenotype Characterized by Eosinophilic Esophagitis and Generalized Autoimmunity. Gastroenterology, 2022, 163, 510-513.e3.	1.3	8
114	Trio genome sequencing for developmental delay and pediatric heart conditions: A comparative microcost analysis. Genetics in Medicine, 2022, 24, 1027-1036.	2.4	7
115	Novel Population Specific Autosomal Copy Number Variation and Its Functional Analysis amongst Negritos from Peninsular Malaysia. PLoS ONE, 2014, 9, e100371.	2.5	6
116	Paternal uniparental disomy of chromosome 19 in a pair of monochorionic diamniotic twins with dysmorphic features and developmental delay. Journal of Medical Genetics, 2018, 55, 847-852.	3.2	6
117	Rare copy number variations affecting the synaptic gene DMXL2 in neurodevelopmental disorders. Journal of Neurodevelopmental Disorders, 2019, 11, 3.	3.1	6
118	Genome sequencing among children with medical complexity: What constitutes value from parents' perspective?. Journal of Genetic Counseling, 2022, 31, 523-533.	1.6	5
119	Arginine-Glycine Amidinotransferase Deficiency and Functional Characterization of Missense Variants in <i>GATM</i> . Human Mutation, 2016, 37, 926-932.	2.5	4
120	Genomics4RD: An integrated platform to share Canadian deep-phenotype and multiomic data for international rare disease gene discovery Human Mutation, 2022, , .	2.5	4
121	Thiemann disease and familial digital arthropathy $\hat{a} \in \text{``brachydactyly: two sides of the same coin?.}$ Orphanet Journal of Rare Diseases, 2019, 14, 156.	2.7	3
122	Analysis of five deep-sequenced trio-genomes of the Peninsular Malaysia Orang Asli and North Borneo populations. BMC Genomics, 2019, 20, 842.	2.8	3
123	A novel intronic variant in UBE3A identified by genome sequencing in a patient with an atypical presentation of Angelman syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 2145-2151.	1.2	3
124	Whole genome sequencing reveals biallelic <scp><i>PLA2G6</i></scp> mutations in siblings with cerebellar atrophy and cap myopathy. Clinical Genetics, 2021, 99, 746-748.	2.0	3
125	ISDN2014_0253: High resolution genomic analyses of a clinically defined autism spectrum disorder cohort. International Journal of Developmental Neuroscience, 2015, 47, 76-76.	1.6	2
126	MG-132â€Diagnostic utility of whole genome sequencing in paediatric medicine. Journal of Medical Genetics, 2015, 52, A12.1-A12.	3.2	1

#	Article	IF	CITATIONS
127	MG-129â€Our experience ofin silicogene panel testing for clinically heterogeneous disorders using exome sequencing. Journal of Medical Genetics, 2015, 52, A11.1-A11.	3.2	1
128	Identification of a novel MSH6 germline variant in a family with multiple gastro-intestinal malignancies by next generation sequencing. Familial Cancer, 2015, 14, 69-75.	1.9	1
129	Genome sequencing identifies a rare case of moderate Zellweger spectrum disorder caused by a PEX3 defect: Case report and literature review. Molecular Genetics and Metabolism Reports, 2020, 25, 100664.	1.1	1
130	MG-108â€Beyond the ACMG 56: Parental choices and initial results from a comprehensive whole genome sequencing-based search for predictive genomic variants in children. Journal of Medical Genetics, 2015, 52, A3.2-A4.	3.2	0
131	MG-130â€Utilising whole exome sequencing to identify causative variants in genetically heterogeneous disorders. Journal of Medical Genetics, 2015, 52, A11.2-A11.	3.2	0
132	MG-106 $\hat{a}\in$ Global developmental delay and characteristic facial features associated with pacs1 gene mutation $\hat{a}\in$ " report of two cases. Journal of Medical Genetics, 2015, 52, A1.2-A1.	3.2	0
133	MG-123â€Exonic and intronic NRXN1 deletions: Novel genotype-phenotype correlations. Journal of Medical Genetics, 2015, 52, A9.1-A9.	3.2	0
134	MG-108â€Agenesis of the corpus callosum and autism associated with zeb1 gene deletion – a case report. Journal of Medical Genetics, 2015, 52, A2.1-A2.	3.2	0
135	Cover Image, Volume 173A, Number 2, February 2017. American Journal of Medical Genetics, Part A, 2017, 173, i.	1.2	0