


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4312437/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function<br>via enhanced survival of implanted cells and angiogenesis. Journal of Thoracic and Cardiovascular<br>Surgery, 2008, 135, 799-808. | 0.4 | 537       |
| 2  | Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances<br>angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiology of Disease, 2012, 46,<br>635-645.                                  | 2.1 | 322       |
| 3  | Collateral Growth and Angiogenesis Around Cortical Stroke. Stroke, 2001, 32, 2179-2184.                                                                                                                                                 | 1.0 | 287       |
| 4  | New Patterns of Intracortical Projections after Focal Cortical Stroke. Neurobiology of Disease, 2001, 8, 910-922.                                                                                                                       | 2.1 | 259       |
| 5  | In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and<br>functional benefits after transplantation into the ischemic rat brain. Experimental Neurology, 2008,<br>210, 656-670.          | 2.0 | 222       |
| 6  | lonic Mechanism of Ouabain-Induced Concurrent Apoptosis and Necrosis in Individual Cultured<br>Cortical Neurons. Journal of Neuroscience, 2002, 22, 1350-1362.                                                                          | 1.7 | 221       |
| 7  | Erythropoietin-Induced Neurovascular Protection, Angiogenesis, and Cerebral Blood Flow<br>Restoration after Focal Ischemia in Mice. Journal of Cerebral Blood Flow and Metabolism, 2007, 27,<br>1043-1054.                              | 2.4 | 193       |
| 8  | Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiology of Disease, 2005, 19, 183-193.                                                                | 2.1 | 184       |
| 9  | Preconditioning Strategy in Stem Cell Transplantation Therapy. Translational Stroke Research, 2013, 4,<br>76-88.                                                                                                                        | 2.3 | 171       |
| 10 | Cell based therapies for ischemic stroke: From basic science to bedside. Progress in Neurobiology, 2014, 115, 92-115.                                                                                                                   | 2.8 | 171       |
| 11 | Delayed Intranasal Delivery of Hypoxic-Preconditioned Bone Marrow Mesenchymal Stem Cells<br>Enhanced Cell Homing and Therapeutic Benefits after Ischemic Stroke in Mice. Cell Transplantation,<br>2013, 22, 977-991.                    | 1.2 | 163       |
| 12 | Differences in Vulnerability to Permanent Focal Cerebral Ischemia Among 3 Common Mouse Strains.<br>Stroke, 2000, 31, 2707-2714.                                                                                                         | 1.0 | 156       |
| 13 | Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons.<br>Experimental Cell Research, 2010, 316, 1773-1783.                                                                                 | 1.2 | 140       |
| 14 | Transplantation of Embryonic Stem Cells Improves Nerve Repair and Functional Recovery After Severe Sciatic Nerve Axotomy in Rats. Stem Cells, 2008, 26, 1356-1365.                                                                      | 1.4 | 131       |
| 15 | Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Development<br>Growth and Differentiation, 2006, 48, 513-523.                                                                                   | 0.6 | 130       |
| 16 | Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Progress in<br>Neurobiology, 2017, 157, 49-78.                                                                                                    | 2.8 | 127       |
| 17 | Inhibition of prolyl hydroxylases by dimethyloxaloylglycine after stroke reduces ischemic brain injury and requires hypoxia inducible factor-1α. Neurobiology of Disease, 2012, 45, 733-742.                                            | 2.1 | 120       |
| 18 | Potassium Channel Blockers Attenuate Hypoxia- and Ischemia-Induced Neuronal Death In Vitro and In<br>Vivo. Stroke, 2003, 34, 1281-1286.                                                                                                 | 1.0 | 109       |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Regulation of therapeutic hypothermia on inflammatory cytokines, microglia polarization, migration and functional recovery after ischemic stroke in mice. Neurobiology of Disease, 2016, 96, 248-260.                                                  | 2.1 | 109       |
| 20 | Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. American Journal of Physiology - Cell Physiology, 2011, 301, C362-C372.                                                             | 2.1 | 107       |
| 21 | Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Experimental Neurology, 2015, 272, 78-87.                                       | 2.0 | 107       |
| 22 | dl-3-n-Butylphthalide prevents neuronal cell death after focal cerebral ischemia in mice via the JNK<br>pathway. Brain Research, 2010, 1359, 216-226.                                                                                                  | 1.1 | 105       |
| 23 | Intranasal Delivery of Apelin-13 Is Neuroprotective and Promotes Angiogenesis After Ischemic Stroke in<br>Mice. ASN Neuro, 2015, 7, 175909141560511.                                                                                                   | 1.5 | 104       |
| 24 | Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats.<br>Brain Research, 2004, 1022, 54-61.                                                                                                            | 1.1 | 94        |
| 25 | Cell Death Mechanism and Protective Effect of Erythropoietin after Focal Ischemia in the<br>Whisker-Barrel Cortex of Neonatal Rats. Journal of Pharmacology and Experimental Therapeutics,<br>2006, 317, 109-116.                                      | 1.3 | 89        |
| 26 | Neurodevelopmental implications of the general anesthesia in neonate and infants. Experimental<br>Neurology, 2015, 272, 50-60.                                                                                                                         | 2.0 | 87        |
| 27 | A novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice. FASEB Journal, 2012, 26, 2799-2810.                                                                                                             | 0.2 | 86        |
| 28 | Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Archiv European Journal of Physiology, 2004, 448, 325-334.                                                                  | 1.3 | 84        |
| 29 | Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances<br>cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem<br>Cell Research and Therapy, 2014, 5, 111. | 2.4 | 82        |
| 30 | iPSC Transplantation Increases Regeneration and Functional Recovery After Ischemic Stroke in Neonatal Rats. Stem Cells, 2014, 32, 3075-3087.                                                                                                           | 1.4 | 79        |
| 31 | Intranasal Delivery of Bone Marrow Mesenchymal Stem Cells Improved Neurovascular Regeneration<br>and Rescued Neuropsychiatric Deficits after Neonatal Stroke in Rats. Cell Transplantation, 2015, 24,<br>391-402.                                      | 1.2 | 77        |
| 32 | Protective effect of apelin on cultured rat bone marrow mesenchymal stem cells against apoptosis.<br>Stem Cell Research, 2012, 8, 357-367.                                                                                                             | 0.3 | 71        |
| 33 | Chinese population exposure to triclosan and triclocarban as measured via human urine and nails.<br>Environmental Geochemistry and Health, 2016, 38, 1125-1135.                                                                                        | 1.8 | 70        |
| 34 | Triclosan/triclocarban levels in maternal and umbilical blood samples and their association with fetal malformation. Clinica Chimica Acta, 2017, 466, 133-137.                                                                                         | 0.5 | 70        |
| 35 | Vector-Free and Transgene-Free Human iPS Cells Differentiate into Functional Neurons and Enhance<br>Functional Recovery after Ischemic Stroke in Mice. PLoS ONE, 2013, 8, e64160.                                                                      | 1.1 | 69        |
| 36 | Restoration of Intracortical and Thalamocortical Circuits after Transplantation of Bone Marrow<br>Mesenchymal Stem Cells into the Ischemic Brain of Mice. Cell Transplantation, 2013, 22, 2001-2015.                                                   | 1.2 | 68        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Optochemogenetic Stimulation of Transplanted iPS-NPCs Enhances Neuronal Repair and Functional Recovery after Ischemic Stroke. Journal of Neuroscience, 2019, 39, 6571-6594.                                                              | 1.7 | 67        |
| 38 | Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 404-421.                                                        | 2.4 | 66        |
| 39 | Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice. Developmental Neurobiology, 2008, 68, 1474-1486.                                                                                   | 1.5 | 62        |
| 40 | Erythropoietin ameliorates early brain injury after subarachnoid haemorrhage by modulating<br>microglia polarization via the EPOR/JAK2-STAT3 pathway. Experimental Cell Research, 2017, 361, 342-352.                                    | 1.2 | 62        |
| 41 | Prolyl hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal stem cell survival. Journal of Cellular Biochemistry, 2009, 106, 903-911.                                                                                        | 1.2 | 59        |
| 42 | Therapeutic Effects of Pharmacologically Induced Hypothermia against Traumatic Brain Injury in Mice.<br>Journal of Neurotrauma, 2014, 31, 1417-1430.                                                                                     | 1.7 | 58        |
| 43 | Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiology of Disease, 2017, 98, 9-24.                                          | 2.1 | 58        |
| 44 | Erythropoietin Prevents Blood Brain Barrier Damage Induced by Focal Cerebral Ischemia in Mice.<br>Neurochemical Research, 2007, 32, 2132-2141.                                                                                           | 1.6 | 56        |
| 45 | DL-3-n-butylphthalide induced neuroprotection, regenerative repair, functional recovery and psychological benefits following traumatic brain injury in mice. Neurochemistry International, 2017, 111, 82-92.                             | 1.9 | 55        |
| 46 | Ministrokes in Rat Barrel Cortex. Stroke, 1995, 26, 1459-1462.                                                                                                                                                                           | 1.0 | 55        |
| 47 | Pyruvate Kinase M2 Increases Angiogenesis, Neurogenesis, and Functional Recovery Mediated by<br>Upregulation of STAT3 and Focal Adhesion Kinase Activities After Ischemic Stroke in Adult Mice.<br>Neurotherapeutics, 2018, 15, 770-784. | 2.1 | 51        |
| 48 | Whisker Stimulation Enhances Angiogenesis in the Barrel Cortex following Focal Ischemia in Mice.<br>Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 57-68.                                                                      | 2.4 | 50        |
| 49 | Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.<br>Experimental Neurology, 2015, 267, 135-142.                                                                                                 | 2.0 | 50        |
| 50 | Longâ€ŧerm survival and regeneration of neuronal and vasculature cells inside the core region after<br>ischemic stroke in adult mice. Brain Pathology, 2017, 27, 480-498.                                                                | 2.1 | 49        |
| 51 | The role of VEGF/VEGFR2 signaling in peripheral stimulation-induced cerebral neurovascular regeneration after ischemic stroke in mice. Experimental Brain Research, 2011, 214, 503-513.                                                  | 0.7 | 45        |
| 52 | Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and<br>improves locomotor function following chronic spinal cord injury in rats. Journal of<br>Neurochemistry, 2016, 137, 604-617.        | 2.1 | 45        |
| 53 | GSK-3β Inhibition Induced Neuroprotection, Regeneration, and Functional Recovery after Intracerebral<br>Hemorrhagic Stroke. Cell Transplantation, 2017, 26, 395-407.                                                                     | 1.2 | 45        |
| 54 | Angiogenesis and stem cell transplantation as potential treatments of cerebral ischemic stroke.<br>Pathophysiology, 2005, 12, 47-62.                                                                                                     | 1.0 | 44        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Formation of Kv2.1â€FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. Journal of Cellular Physiology, 2008, 217, 544-557.                                                                                   | 2.0 | 44        |
| 56 | Intranasally Delivered Wnt3a Improves Functional Recovery after Traumatic Brain Injury by<br>Modulating Autophagic, Apoptotic, and Regenerative Pathways in the Mouse Brain. Journal of<br>Neurotrauma, 2018, 35, 802-813.                       | 1.7 | 44        |
| 57 | Delayed and repeated intranasal delivery of bone marrow stromal cells increases regeneration and functional recovery after ischemic stroke in mice. BMC Neuroscience, 2018, 19, 20.                                                              | 0.8 | 43        |
| 58 | Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice. Stem Cell Research and Therapy, 2013, 4, 93.                                                | 2.4 | 42        |
| 59 | Regulatory roles of the NMDA receptor GluN3A subunit in locomotion, pain perception and cognitive functions in adult mice. Journal of Physiology, 2013, 591, 149-168.                                                                            | 1.3 | 40        |
| 60 | Protective effects of GPR37 <i>via</i> regulation of inflammation and multiple cell death pathways after ischemic stroke in mice. FASEB Journal, 2019, 33, 10680-10691.                                                                          | 0.2 | 39        |
| 61 | Administration of low dose estrogen attenuates gliosis and protects neurons in acute spinal cord injury in rats. Journal of Neurochemistry, 2016, 136, 1064-1073.                                                                                | 2.1 | 38        |
| 62 | Regulatory Role of the JNK-STAT1/3 Signaling in Neuronal Differentiation of Cultured Mouse Embryonic Stem Cells. Cellular and Molecular Neurobiology, 2014, 34, 881-893.                                                                         | 1.7 | 37        |
| 63 | Neonatal inflammatory pain and systemic inflammatory responses as possible environmental factors<br>in the development of autism spectrum disorder of juvenile rats. Journal of Neuroinflammation, 2016,<br>13, 109.                             | 3.1 | 37        |
| 64 | The Effect of Recombinant Human Erythropoietin on Neurovasculature Repair after Focal Ischemic<br>Stroke in Neonatal Rats. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 521-528.                                            | 1.3 | 35        |
| 65 | Mobilization of Endogenous Bone Marrow Derived Endothelial Progenitor Cells and Therapeutic<br>Potential of Parathyroid Hormone after Ischemic Stroke in Mice. PLoS ONE, 2014, 9, e87284.                                                        | 1.1 | 35        |
| 66 | Sublethal Transient Global Ischemia Stimulates Migration of Neuroblasts and Neurogenesis in Mice.<br>Translational Stroke Research, 2010, 1, 184-196.                                                                                            | 2.3 | 34        |
| 67 | Intracranial Transplantation of Hypoxia-Preconditioned iPSC-Derived Neural Progenitor Cells<br>Alleviates Neuropsychiatric Defects after Traumatic Brain Injury in Juvenile Rats. Cell Transplantation,<br>2016, 25, 797-809.                    | 1.2 | 34        |
| 68 | Cortical Transplantation of Brainâ€Mimetic Glycosaminoglycan Scaffolds and Neural Progenitor Cells<br>Promotes Vascular Regeneration and Functional Recovery after Ischemic Stroke in Mice. Advanced<br>Healthcare Materials, 2020, 9, e1900285. | 3.9 | 34        |
| 69 | Ion Channels in Regulation of Neuronal Regenerative Activities. Translational Stroke Research, 2014, 5, 156-162.                                                                                                                                 | 2.3 | 30        |
| 70 | Enhanced Neurogenesis and Collaterogenesis by Sodium Danshensu Treatment After Focal Cerebral<br>Ischemia in Mice. Cell Transplantation, 2018, 27, 622-636.                                                                                      | 1.2 | 29        |
| 71 | Therapeutic Strategy of Erythropoietin in Neurological Disorders. CNS and Neurological Disorders -<br>Drug Targets, 2008, 7, 227-234.                                                                                                            | 0.8 | 26        |
| 72 | Improved Therapeutic Benefits by Combining Physical Cooling With Pharmacological Hypothermia<br>After Severe Stroke in Rats. Stroke, 2016, 47, 1907-1913.                                                                                        | 1.0 | 26        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Temporal Gene Expression Profiles after Focal Cerebral Ischemia in Mice. , 2018, 9, 249.                                                                                                                                                             |     | 25        |
| 74 | Combinatorial intranasal delivery of bone marrow mesenchymal stem cells and insulin-like growth factor-1 improves neurovascularization and functional outcomes following focal cerebral ischemia in mice. Experimental Neurology, 2021, 337, 113542. | 2.0 | 24        |
| 75 | Neuropsychological Deficits Chronically Developed after Focal Ischemic Stroke and Beneficial Effects of Pharmacological Hypothermia in the Mouse. , 2020, 11, 1.                                                                                     |     | 23        |
| 76 | Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy. Chinese Medical Journal, 2017, 130, 2361-2374.                                                                                                                                  | 0.9 | 23        |
| 77 | Expression of the NMDA receptor subunit GluN3A (NR3A) in the olfactory system and its regulatory role on olfaction in the adult mouse. Brain Structure and Function, 2016, 221, 3259-3273.                                                           | 1.2 | 22        |
| 78 | Conversion of Reactive Astrocytes to Induced Neurons Enhances Neuronal Repair and Functional Recovery After Ischemic Stroke. Frontiers in Aging Neuroscience, 2021, 13, 612856.                                                                      | 1.7 | 22        |
| 79 | Transplantation of iPS cell-derived neural progenitors overexpressing SDF-11± increases regeneration and functional recovery after ischemic stroke. Oncotarget, 2017, 8, 97537-97553.                                                                | 0.8 | 22        |
| 80 | Expression of heparanase in vascular cells and astrocytes of the mouse brain after focal cerebral ischemia. Brain Research, 2012, 1433, 137-144.                                                                                                     | 1.1 | 21        |
| 81 | A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of the adult<br>mouse. American Journal of Physiology - Cell Physiology, 2015, 308, C570-C577.                                                                  | 2.1 | 21        |
| 82 | Delayed treatment of 6â€Bromoindirubinâ€3′â€oxime stimulates neurogenesis and functional recovery after<br>focal ischemic stroke in mice. International Journal of Developmental Neuroscience, 2017, 57, 77-84.                                      | 0.7 | 20        |
| 83 | Pathogenesis of sporadic Alzheimer's disease by deficiency of NMDA receptor subunit GluN3A.<br>Alzheimer's and Dementia, 2022, 18, 222-239.                                                                                                          | 0.4 | 19        |
| 84 | Potential role of KCNQ/M-channels in regulating neuronal differentiation in mouse hippocampal and embryonic stem cell-derived neuronal cultures. Experimental Neurology, 2011, 229, 471-483.                                                         | 2.0 | 18        |
| 85 | Pharmacological hypothermia induced neurovascular protection after severe stroke of transient middle cerebral artery occlusion in mice. Experimental Neurology, 2020, 325, 113133.                                                                   | 2.0 | 18        |
| 86 | Erythropoietin Reduces Neuronal Cell Death and Hyperalgesia Induced by Peripheral Inflammatory Pain<br>in Neonatal Rats. Molecular Pain, 2011, 7, 1744-8069-7-51.                                                                                    | 1.0 | 17        |
| 87 | Modulation of Stem Cells as Therapeutics for Severe Mental Disorders and Cognitive Impairments.<br>Frontiers in Psychiatry, 2020, 11, 80.                                                                                                            | 1.3 | 17        |
| 88 | Primed for lethal battle: A step forward to enhance the efficacy and efficiency of stem cell transplantation therapy. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 527.                                                                | 0.4 | 16        |
| 89 | Association between Leukoaraiosis and Symptomatic Intracranial Large Artery Stenoses and Occlusions: the Chinese Intracranial Atherosclerosis (CICAS) Study. , 2018, 9, 1074.                                                                        |     | 15        |
| 90 | DPP-4 Inhibitor Linagliptin is Neuroprotective in Hyperglycemic Mice with Stroke via the AKT/mTOR<br>Pathway and Anti-apoptotic Effects. Neuroscience Bulletin, 2020, 36, 407-418.                                                                   | 1.5 | 15        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | DL-3-n-butylphthalide Increases Collateriogenesis and Functional Recovery after Focal Ischemic Stroke in Mice. , 2021, 12, 1835.                                                                                                    |     | 15        |
| 92  | Regeneration after stroke: Stem cell transplantation and trophic factors. Brain Circulation, 2016, 2, 86.                                                                                                                           | 0.7 | 15        |
| 93  | Efficient neuronal differentiation of mouse ES and iPS cells using a rotary cell culture protocol.<br>Differentiation, 2013, 86, 149-158.                                                                                           | 1.0 | 11        |
| 94  | Vascular protection and regenerative effects of intranasal DL-3-N-butylphthalide treatment after ischaemic stroke in mice. Stroke and Vascular Neurology, 2021, 6, 74-79.                                                           | 1.5 | 11        |
| 95  | Tuning Protein Dynamics to Sense Rapid Endoplasmicâ€Reticulum Calcium Dynamics. Angewandte Chemie<br>- International Edition, 2021, 60, 23289-23298.                                                                                | 7.2 | 10        |
| 96  | Early-life exposure to air pollutants and adverse pregnancy outcomes: protocol for a prospective cohort study in Beijing. BMJ Open, 2017, 7, e015895.                                                                               | 0.8 | 9         |
| 97  | Pharmacokinetics and Toxicology of the Neuroprotective e,e,e-Methanofullerene(60)-63-tris Malonic<br>AcidÂ[C3] in Mice and Primates. European Journal of Drug Metabolism and Pharmacokinetics, 2018, 43,<br>543-554.                | 0.6 | 9         |
| 98  | Honokiol for the Treatment of Neonatal Pain and Prevention of Consequent Neurobehavioral<br>Disorders. Journal of Natural Products, 2015, 78, 2531-2536.                                                                            | 1.5 | 8         |
| 99  | Longitudinal MRI evaluation of neuroprotective effects of pharmacologically induced hypothermia in experimental ischemic stroke. Magnetic Resonance Imaging, 2017, 40, 24-30.                                                       | 1.0 | 8         |
| 100 | Improved trafficking and expression of luminopsins for more efficient optical and pharmacological control of neuronal activity. Journal of Neuroscience Research, 2020, 98, 481-490.                                                | 1.3 | 8         |
| 101 | Establishment of a risk assessment tool for pregnancy-associated venous thromboembolism and its<br>clinical application: protocol for a prospective observational study in Beijing. BMC Pregnancy and<br>Childbirth, 2019, 19, 294. | 0.9 | 7         |
| 102 | Glial Cell-Based Vascular Mechanisms and Transplantation Therapies in Brain Vessel and Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 627682.                                                            | 1.8 | 7         |
| 103 | GPR37 modulates progenitor cell dynamics in a mouse model of ischemic stroke. Experimental<br>Neurology, 2021, 342, 113719.                                                                                                         | 2.0 | 5         |
| 104 | Hypoxia-Primed Stem Cell Transplantation in Stroke. Springer Series in Translational Stroke Research, 2019, , 9-26.                                                                                                                 | 0.1 | 3         |
| 105 | Cellular Therapy for Ischemic Stroke. , 2012, , 777-814.                                                                                                                                                                            |     | 1         |
| 106 | N-methyl-D-aspartate receptor subtype 3A promotes apoptosis in developing mouse brain exposed to hyperoxia. Neural Regeneration Research, 2012, 7, 273-7.                                                                           | 1.6 | 0         |