
Xueming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4312331/publications.pdf Version: 2024-02-01

XHEMING CHEN

#	Article	IF	CITATIONS
1	Electrochemical removal of fluoride ions from industrial wastewater. Chemical Engineering Science, 2003, 58, 987-993.	3.8	369
2	Electrically Regenerated Ion Exchange for Removal and Recovery of Cr(VI) from Wastewater. Environmental Science & Technology, 2007, 41, 1439-1443.	10.0	280
3	Electrocoagulation and Electroflotation of Restaurant Wastewater. Journal of Environmental Engineering, ASCE, 2000, 126, 858-863.	1.4	209
4	Stable Ti/IrOxâ^'Sb2O5â^'SnO2Anode for O2Evolution with Low Ir Content. Journal of Physical Chemistry B, 2001, 105, 4623-4628.	2.6	185
5	Novel Electrode System for Electroflotation of Wastewater. Environmental Science & Technology, 2002, 36, 778-783.	10.0	171
6	Investigation on the electrolysis voltage of electrocoagulation. Chemical Engineering Science, 2002, 57, 2449-2455.	3.8	171
7	Anodic oxidation of dyes at novel Ti/B-diamond electrodes. Chemical Engineering Science, 2003, 58, 995-1001.	3.8	160
8	High-Performance Ti/BDD Electrodes for Pollutant Oxidation. Environmental Science & Technology, 2003, 37, 5021-5026.	10.0	156
9	Comparison of Ti/BDD and Ti/SnO2?Sb2O5 electrodes for pollutant oxidation. Journal of Applied Electrochemistry, 2005, 35, 185-191.	2.9	152
10	Electrochemical Behavior of Novel Ti/IrOxâ^'Sb2O5â^'SnO2Anodes. Journal of Physical Chemistry B, 2002, 106, 4364-4369.	2.6	148
11	Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution. Electrochimica Acta, 2005, 50, 4155-4159.	5.2	114
12	Combined electrocoagulation and electroflotation for removal of fluoride from drinking water. Journal of Hazardous Materials, 2008, 159, 452-457.	12.4	114
13	Anodic oxidation of Orange II on Ti/BDD electrode: Variable effects. Separation and Purification Technology, 2006, 48, 45-49.	7.9	105
14	Ti/RuO2–Sb2O5–SnO2 electrodes for chlorine evolution from seawater. Chemical Engineering Journal, 2011, 172, 47-51.	12.7	94
15	Ti/SnO2–Sb2O5–RuO2/α-PbO2/β-PbO2 electrodes for pollutants degradation. Chemical Engineering Journal, 2011, 174, 304-309.	12.7	89
16	Continuous electrodeionization for removal and recovery of Cr(VI) from wastewater. Separation and Purification Technology, 2009, 67, 123-126.	7.9	57
17	Polarity reversal electrochemical process for water softening. Separation and Purification Technology, 2019, 210, 943-949.	7.9	42
18	Electrochemical water softening using air-scoured washing for scale detachment. Separation and Purification Technology, 2018, 191, 216-224.	7.9	38

XUEMING CHEN

#	Article	IF	CITATIONS
19	Antimony and cerium co-doped tin oxide electrodes for pollutant degradation. Chemical Engineering Journal, 2009, 147, 412-415.	12.7	35
20	Continuous Multistage Electrochemical Precipitation Reactor for Water Softening. Industrial & Engineering Chemistry Research, 2019, 58, 461-468.	3.7	34
21	Chemical-free ion exchange and its application for desalination. Desalination, 2015, 365, 144-150.	8.2	33
22	Variable effects on the performance of continuous electrodeionization for the removal of Cr(VI) from wastewater. Separation and Purification Technology, 2009, 68, 357-362.	7.9	32
23	Membrane-free electrodeionization for high purity water production. Desalination, 2013, 329, 86-92.	8.2	32
24	Continuous multi-cell electrochemical reactor for pollutant oxidation. Chemical Engineering Science, 2015, 122, 630-636.	3.8	32
25	Investigation of Tiâ^IrO[sub 2]-Sb[sub 2]O[sub 5]-SnO[sub 2] Electrodes for O[sub 2] Evolution. Journal of the Electrochemical Society, 2005, 152, J59.	2.9	31
26	Current Pulsated Electrochemical Precipitation for Water Softening. Industrial & Engineering Chemistry Research, 2018, 57, 6585-6593.	3.7	31
27	Desalination of water with high conductivity using membrane-free electrodeionization. Separation and Purification Technology, 2014, 128, 39-44.	7.9	29
28	Active Ti/SnO2 anodes for pollutants oxidation prepared using chemical vapor deposition. Surface and Coatings Technology, 2008, 202, 3850-3855.	4.8	27
29	Continuous treatment of biologically treated textile effluent using a multi-cell electrochemical reactor. Chemical Engineering Journal, 2016, 286, 571-577.	12.7	27
30	Membrane-based electrochemical precipitation for water softening. Journal of Membrane Science, 2020, 597, 117639.	8.2	26
31	Membrane-free electrodeionization without electrode polarity reversal for high purity water production. Desalination, 2014, 345, 50-55.	8.2	25
32	Membrane-free electrodeionization using phosphonic acid resin for nickel containing wastewater purification. Separation and Purification Technology, 2019, 223, 88-95.	7.9	25
33	Membrane-free electrodeionization using strong-type resins for high purity water production. Separation and Purification Technology, 2015, 144, 90-96.	7.9	24
34	Membrane-free electrodeionization for purification of wastewater containing low concentration of nickel ions. Chemical Engineering Journal, 2015, 280, 711-719.	12.7	23
35	Production of high purity water using membrane-free electrodeionization with improved resin layer structure. Separation and Purification Technology, 2016, 164, 89-96.	7.9	23
36	Ti/RuO2-IrO2-SnO2-Sb2O5 Anodes for Cl2 Evolution from Seawater. Electrochemistry, 2012, 80, 507-511.	1.4	21

XUEMING CHEN

#	Article	IF	CITATIONS
37	Pseudocapacitive Ti/RuO2-IrO2-RhOx electrodes with high bipolar stability for phenol degradation. Separation and Purification Technology, 2021, 263, 118395.	7.9	21
38	Proper Hot Filament CVD Conditions for Fabrication of Ti-Boron Doped Diamond Electrodes. Journal of the Electrochemical Society, 2004, 151, B214.	2.9	18
39	High-performance Ti/IrO2-RhOx-TiO2/α-PbO2/β-PbO2 electrodes for scale inhibitors degradation. Chemical Engineering Journal, 2022, 435, 135167.	12.7	15
40	High-Performance Ti/IrO ₂ –RhOx–Ta ₂ O ₅ Electrodes for Polarity Reversal Applications. Industrial & Engineering Chemistry Research, 2021, 60, 4310-4320.	3.7	13
41	Ti/SnO[sub 2]–Sb Electrodes for Pollutant Degradation Prepared Using Ultrasonic Spray Pyrolysis. Electrochemical and Solid-State Letters, 2008, 11, J37.	2.2	11
42	Synthesis and characterization of an amphoteric resin for use in membrane-free electrodeionization. Separation and Purification Technology, 2021, 272, 118857.	7.9	5
43	Amphoteric blend ion exchange resin with medium-strength alkalinity for high-purity water production in membrane-free electrodeionization. Desalination, 2022, 529, 115663.	8.2	4
44	Periodic bipolar operation of Ti/RuO2-IrO2-RhOx electrodes for in-situ polymeric product desorption in recalcitrant contaminant degradation: From pseudocapacitive stabilization to model simulation. Chemical Engineering Journal, 2022, 448, 137497.	12.7	3
45	A novel combined electrochemical-biological method for non-biodegradable pollutants degradation. Desalination and Water Treatment, 2014, 52, 6389-6395.	1.0	2