
Zahra Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/43123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unexpected spatial stability of water chemistry in headwater stream networks. Ecology Letters, 2018, 21, 296-308.	3.0	149
2	Stratification of reactivity determines nitrate removal in groundwater. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2494-2499.	3.3	77
3	Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer. Journal of Hydrology, 2016, 543, 31-46.	2.3	62
4	Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments. Biogeosciences, 2016, 13, 1863-1875.	1.3	56
5	Hedgerow impacts on soilâ€water transfer due to rainfall interception and rootâ€water uptake. Hydrological Processes, 2008, 22, 4723-4735.	1.1	39
6	Predicting Nutrient Incontinence in the Anthropocene at Watershed Scales. Frontiers in Environmental Science, 2020, 7, .	1.5	39
7	High chloride concentrations in the soil and groundwater under an oak hedge in the West of France: an indicator of evapotranspiration and water movement. Hydrological Processes, 2009, 23, 1865-1873.	1.1	33
8	Hedgerows reduce nitrate flux at hillslope and catchment scales via root uptake and secondary effects. Journal of Contaminant Hydrology, 2018, 215, 51-61.	1.6	28
9	Modelling and observation of hedgerow transpiration effect on water balance components at the hillslope scale in Brittany. Hydrological Processes, 2012, 26, 4001-4014.	1.1	24
10	Simulating soilâ€water movement under a hedgerow surrounding a bottomland reveals the importance of transpiration in water balance. Hydrological Processes, 2008, 22, 577-585.	1.1	18
11	Quantification of Hyporheic Nitrate Removal at the Reach Scale: Exposure Times Versus Residence Times. Water Resources Research, 2019, 55, 9808-9825.	1.7	18
12	Nitrate attenuation in soil and shallow groundwater under a bottomland hedgerow in a European farming landscape. Hydrological Processes, 2012, 26, 3570-3578.	1.1	17
13	Constitution of a catchment virtual observatory for sharing flow and transport models outputs. Journal of Hydrology, 2016, 543, 59-66.	2.3	14
14	Soil water movement under a bottomland hedgerow during contrasting meteorological conditions. Hydrological Processes, 2011, 25, 1431-1442.	1.1	13
15	Long-term ecological observatories needed to understand ecohydrological systems in the Anthropocene: a catchment-scale case study in Brittany, France. Regional Environmental Change, 2019, 19, 363-377.	1.4	13
16	Characterization of Diffuse Groundwater Inflows into Stream Water (Part II: Quantifying) Tj ETQq0 0 0 rgBT /Ove 2430.	erlock 10 T 1.2	f 50 147 Td (13
17	Nonstationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: a case study. Soil, 2016, 2, 241-255.	2.2	12
18	Characterization of Diffuse Groundwater Inflows into Streamwater (Part I: Spatial and Temporal) Tj ETQq0 0 0 rg	BT /Overlo 1.2	ock 10 Tf 50 6 10

11, 2389.

Zahra Thomas

#	Article	IF	CITATIONS
19	Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases. Sustainability, 2021, 13, 4713.	1.6	8
20	What do we need to predict groundwater nitrate recovery trajectories?. Science of the Total Environment, 2021, 788, 147661.	3.9	8
21	Combining passive and active distributed temperature sensing measurements to locate and quantify groundwater discharge variability into a headwater stream. Hydrology and Earth System Sciences, 2022, 26, 1459-1479.	1.9	6
22	Riparian forest transpiration under the current and projected <scp>M</scp> editerranean climate: <scp>E</scp> ffects on soil water and nitrate uptake. Ecohydrology, 2019, 12, e2043.	1.1	5
23	Compost from Date Palm Residues Increases Soil Nutrient Availability and Growth of Silage Corn (Zea) Tj ETQq1 1	0.784314 1.7	rgBT /Over
24	Interdisciplinarité et représentation de la complexité des systèmes socio-écologiques : recherches s la zone atelier Armorique. Natures Sciences Societes, 2017, 25, S50-S54.	o.1	2
25	Une réflexion sur l'état des connaissances des fonctions du bocage pour l'eau dans une perspective o mobilisation pour l'action. Sciences Eaux & Territoires, 2019, Numéro 30, 32-37.	le 0.1	2
26	Towards a Robust and Flexible Numerical Framework for Integrated Urban Water System Modeling. Procedia Engineering, 2016, 154, 757-764.	1.2	1
27	Experimental and Modelâ€Based Investigation of the Effect of the Freeâ€Surface Flow Regime on the Detection Threshold of Warm Water Inflows. Water Resources Research, 2020, 56, e2018WR023722.	1.7	0
28	Monitoring and Modeling of Saline-Sodic Vertisol Reclamation by Echinochloa stagnina. Soil Systems, 2022, 6, 4.	1.0	0