
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4312269/publications.pdf Version: 2024-02-01

YONG-FENCLU

#	Article	IF	CITATIONS
1	Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. Journal of Materials Chemistry, 2011, 21, 4743-4755.	6.7	440
2	Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. Journal of Alloys and Compounds, 2011, 509, 675-686.	2.8	266
3	Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 575, 246-256.	2.8	233
4	Superior catalytic activity derived from a two-dimensional Ti ₃ C ₂ precursor towards the hydrogen storage reaction of magnesium hydride. Chemical Communications, 2016, 52, 705-708.	2.2	220
5	High performance amorphous-Si@SiO /C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. Journal of Power Sources, 2014, 256, 190-199.	4.0	208
6	Size-Dependent Kinetic Enhancement in Hydrogen Absorption and Desorption of the Liâ^'Mgâ^'Nâ^'H System. Journal of the American Chemical Society, 2009, 131, 1862-1870.	6.6	193
7	Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy and Environmental Science, 2021, 14, 2302-2313.	15.6	186
8	Potassiumâ€Modified Mg(NH ₂) ₂ /2 LiH System for Hydrogen Storage. Angewandte Chemie - International Edition, 2009, 48, 5828-5832.	7.2	181
9	Enhanced hydrogen storage properties of MgH 2 catalyzed with carbon-supported nanocrystalline TiO 2. Journal of Power Sources, 2018, 398, 183-192.	4.0	176
10	A Study of the Structural and Electrochemical Properties of La[sub 0.7]Mg[sub 0.3](Ni[sub) Tj ETQq0 0 0 rgBT /O 2003, 150, A565.	verlock 10 1.3	0 Tf 50 387 ⁻ 164
11	An investigation on the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x (x=3.15–3.80) hydrogen storage electrode alloys. Journal of Alloys and Compounds, 2003, 351, 228-234.	2.8	146
12	A Novel Strategy to Suppress Capacity and Voltage Fading of Li―and Mnâ€Rich Layered Oxide Cathode Material for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1601066.	10.2	141
13	A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion batteries. Journal of Power Sources, 2013, 239, 466-474.	4.0	139
14	A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures. Nature Communications, 2014, 5, 3519.	5.8	136
15	Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications. Molecular Systems Design and Engineering, 2018, 3, 748-803.	1.7	127
16	Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium–sulfur batteries. Journal of Alloys and Compounds, 2014, 608, 220-228.	2.8	125
17	<i>In situ</i> formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH ₂ . Journal of Materials Chemistry A, 2019, 7, 14244-14252.	5.2	114
18	Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH ₂ . Journal of Materials Chemistry A, 2018, 6, 16177-16185.	5.2	113

#	Article	IF	CITATIONS
19	Tuning Surface Structure and Strain in Pd–Pt Core–Shell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction. Small, 2017, 13, 1603423.	5.2	104
20	Hydrogen Release from Mg(NH2)2â^'MgH2through Mechanochemical Reaction. Journal of Physical Chemistry B, 2006, 110, 14688-14692.	1.2	103
21	Improvement of Hydrogen Storage Properties of the Li–Mg–N–H System by Addition of LiBH ₄ . Chemistry of Materials, 2008, 20, 4398-4402.	3.2	102
22	The effect of Mn substitution for Ni on the structural and electrochemical properties of La0.7Mg0.3Ni2.55â^xCo0.45Mnx hydrogen storage electrode alloys. International Journal of Hydrogen Energy, 2004, 29, 297-305.	3.8	101
23	Cycling durability and degradation behavior of La–Mg–Ni–Co-type metal hydride electrodes. Journal of Alloys and Compounds, 2005, 395, 291-299.	2.8	100
24	Metal–N–H systems for the hydrogen storage. Scripta Materialia, 2007, 56, 817-822.	2.6	90
25	Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Metals, 2020, 39, 616-635.	3.6	89
26	Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2. Chemical Engineering Journal, 2021, 406, 126831.	6.6	89
27	Structural and Compositional Changes during Hydrogenation/Dehydrogenation of the Liâ^'Mgâ^'Nâ^'H System. Journal of Physical Chemistry C, 2007, 111, 18439-18443.	1.5	85
28	Ultrafine SnO2 dispersed carbon matrix composites derived by a sol–gel method as anode materials for lithium ion batteries. Electrochimica Acta, 2010, 55, 9067-9074.	2.6	85
29	Effect of Co content on the structural and electrochemical properties of the La0.7Mg0.3Ni3.4â°'xMn0.1Cox hydride alloys. Journal of Alloys and Compounds, 2004, 376, 304-313.	2.8	79
30	A novel catalyst precursor K ₂ TiF ₆ with remarkable synergetic effects of K, Ti and F together on reversible hydrogen storage of NaAlH ₄ . Chemical Communications, 2011, 47, 1740-1742.	2.2	78
31	Remarkably improved hydrogen storage properties of NaAlH4 doped with 2D titanium carbide. Journal of Power Sources, 2016, 327, 519-525.	4.0	78
32	A novel strategy to significantly enhance the initial voltage and suppress voltage fading of a Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3610-3624.	5.2	78
33	A novel solid-solution MXene (Ti0.5V0.5)3C2 with high catalytic activity for hydrogen storage in MgH2. Materialia, 2018, 1, 114-120.	1.3	78
34	Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior Lithium–Sulfur Battery Cathodes. ACS Applied Materials & Interfaces, 2017, 9, 10717-10729.	4.0	77
35	Improved Hydrogen Storage Properties of LiBH ₄ Destabilized by in Situ Formation of MgH ₂ and LaH ₃ . Journal of Physical Chemistry C, 2012, 116, 1588-1595.	1.5	74
36	Li–Mg–N–H-based combination systems for hydrogen storage. Journal of Alloys and Compounds, 2011, 509, 7844-7853.	2.8	73

#	Article	IF	CITATIONS
37	A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2018, 43, 23327-23335.	3.8	73
38	XRD study on the electrochemical hydriding/dehydriding behavior of the La–Mg–Ni–Co-type hydrogen storage alloys. Journal of Alloys and Compounds, 2005, 403, 296-304.	2.8	70
39	Development of Catalystâ€Enhanced Sodium Alanate as an Advanced Hydrogenâ€Storage Material for Mobile Applications. Energy Technology, 2018, 6, 487-500.	1.8	70
40	Enabling a Stable Room-Temperature Sodium–Sulfur Battery Cathode by Building Heterostructures in Multichannel Carbon Fibers. ACS Nano, 2021, 15, 5639-5648.	7.3	70
41	Function of Al on the cycling behavior of the La–Mg–Ni–Co-type alloy electrodes. International Journal of Hydrogen Energy, 2008, 33, 124-133.	3.8	69
42	Hydrogen Storage in a LiNH2â^'MgH2 (1:1) System. Chemistry of Materials, 2008, 20, 3521-3527.	3.2	69
43	Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Research, 2021, 14, 148-156.	5.8	68
44	Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature. Energy Storage Materials, 2019, 23, 79-87.	9.5	67
45	Effect of the cerium content on the structural and electrochemical properties of the La0.7â^'xCexMg0.3Ni2.875Mn0.1Co0.525 (x=0–0.5) hydrogen storage alloys. Journal of Alloys and Compounds, 2004, 373, 237-245.	2.8	65
46	Chemical vapor deposition prepared bi-morphological carbon-coated Fe3O4 composites as anode materials for lithium-ion batteries. Journal of Power Sources, 2015, 282, 257-264.	4.0	65
47	Improved hydrogen storage kinetics of the Li–Mg–N–H system by addition of Mg(BH ₄) ₂ . Dalton Transactions, 2013, 42, 3802-3811.	1.6	64
48	FeO/C anode materials of high capacity and cycle stability for lithium-ion batteries synthesized by carbothermal reduction. Journal of Alloys and Compounds, 2013, 565, 97-103.	2.8	64
49	Metathesis Reaction-Induced Significant Improvement in Hydrogen Storage Properties of the KF-Added Mg(NH2)2–2LiH System. Journal of Physical Chemistry C, 2013, 117, 866-875.	1.5	59
50	Electrochemical Properties of the La[sub 0.7]Mg[sub 0.3]Ni[sub 2.65â^'x]Mn[sub 0.1]Co[sub 0.75]Al[sub x] (xâ€,=â€,0-0.5) Hydrogen Storage Alloy Electrodes. Journal of the Electrochemical Society, 2005, 152, A326.	1.3	58
51	Degradation Mechanism of the La-Mg-Ni-Based Metal Hydride Electrode La[sub 0.7]Mg[sub 0.3]Ni[sub 3.4]Mn[sub 0.1]. Journal of the Electrochemical Society, 2005, 152, A1089.	1.3	58
52	Mechanisms for the enhanced hydrogen desorption performance of the TiF4-catalyzed Na2LiAlH6 used for hydrogen storage. Energy and Environmental Science, 2010, 3, 645.	15.6	58
53	Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications. Chemical Record, 2016, 16, 189-204.	2.9	58
54	The electrochemical performance of a La–Mg–Ni–Co–Mn metal hydride electrode alloy in the temperature range of â^'20 to 30°C. Electrochimica Acta, 2004, 49, 545-555.	2.6	57

#	Article	IF	CITATIONS
55	Hydrogen storage and electrochemical properties of the La0.7Mg0.3Ni3.825â^'xCo0.675Mnx hydrogen storage electrode alloys. Journal of Alloys and Compounds, 2004, 365, 246-252.	2.8	55
56	The correlative effects of Al and Co on the structure and electrochemical properties of a La–Mg–Ni-based hydrogen storage electrode alloy. Journal of Alloys and Compounds, 2010, 496, 454-461.	2.8	55
57	Highly Stable Cycling of Amorphous Li ₂ CO ₃ -Coated α-Fe ₂ O ₃ Nanocrystallines Prepared via a New Mechanochemical Strategy for Li-Ion Batteries. Advanced Functional Materials, 2017, 27, 1605011.	7.8	53
58	Chemical Preinsertion of Lithium: An Approach to Improve the Intrinsic Capacity Retention of Bulk Si Anodes for Li-ion Batteries. Journal of Physical Chemistry Letters, 2012, 3, 3555-3558.	2.1	52
59	Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization. Journal of Alloys and Compounds, 2014, 604, 130-136.	2.8	51
60	XRD study of the hydrogenation and dehydrogenation process of the two different phase components in a Ti–V-based multiphase hydrogen storage electrode alloy. Journal of Alloys and Compounds, 2004, 370, 254-260.	2.8	50
61	A hybrid Si@FeSi _y /SiO _x anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis. Journal of Materials Chemistry A, 2015, 3, 10767-10776.	5.2	50
62	Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation. Nano Research, 2015, 8, 533-545.	5.8	49
63	A New Strategy to Effectively Suppress the Initial Capacity Fading of Iron Oxides by Reacting with LiBH ₄ . Advanced Functional Materials, 2017, 27, 1700342.	7.8	49
64	Multi-hydride systems with enhanced hydrogen storage properties derived from Mg(BH4)2 and LiAlH4. International Journal of Hydrogen Energy, 2012, 37, 10733-10742.	3.8	48
65	Understanding the role of K in the significantly improved hydrogen storage properties of a KOH-doped Li–Mg–N–H system. Journal of Materials Chemistry A, 2013, 1, 5031.	5.2	48
66	Achieving ambient temperature hydrogen storage in ultrafine nanocrystalline TiO ₂ @C-doped NaAlH ₄ . Journal of Materials Chemistry A, 2016, 4, 1087-1095.	5.2	48
67	High-rate capability of LiFePO4 cathode materials containing Fe2P and trace carbon. Journal of Power Sources, 2012, 199, 256-262.	4.0	47
68	Synthesis and Thermal Decomposition Behaviors of Magnesium Borohydride Ammoniates with Controllable Composition as Hydrogen Storage Materials. Chemistry - an Asian Journal, 2013, 8, 476-481.	1.7	47
69	Bi-structural fibers of carbon nanotube coated with nitrogen/oxygen dual-doped porous carbon layer as superior sulfur host for lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 797, 1205-1215.	2.8	47
70	Incorporation of Ammonia Borane Groups in the Lithium Borohydride Structure Enables Ultrafast Lithium Ion Conductivity at Room Temperature for Solid-State Batteries. Chemistry of Materials, 2020, 32, 671-678.	3.2	47
71	Nano-synergy enables highly reversible storage of 9.2Âwt% hydrogen at mild conditions with lithium borohydride. Nano Energy, 2021, 83, 105839.	8.2	46
72	Formation Reactions and the Thermodynamics and Kinetics of Dehydrogenation Reaction of Mixed Alanate Na ₂ LiAlH ₆ . Journal of Physical Chemistry C, 2009, 113, 7978-7984.	1.5	45

#	Article	IF	CITATIONS
73	Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2017, 42, 4244-4251.	3.8	45
74	Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for Li-ion batteries. Energy Storage Materials, 2018, 14, 279-288.	9.5	45
75	Effect of Co content on the structural and electrochemical properties of the La0.7Mg0.3Ni3.4â^'xMn0.1Cox hydride alloys. Journal of Alloys and Compounds, 2004, 376, 296-303.	2.8	44
76	Structure and electrochemical properties of the Fe substituted Ti–V-based hydrogen storage alloys. Journal of Alloys and Compounds, 2008, 463, 189-195.	2.8	44
77	Enhanced dehydrogenation/hydrogenation kinetics of the Mg(NH2)2–2LiH system with NaOH additive. International Journal of Hydrogen Energy, 2011, 36, 2137-2144.	3.8	44
78	A mechanochemical synthesis of submicron-sized Li ₂ S and a mesoporous Li ₂ S/C hybrid for high performance lithium/sulfur battery cathodes. Journal of Materials Chemistry A, 2017, 5, 6471-6482.	5.2	44
79	In Situ Encapsulation of the Nanoscale Er ₂ O ₃ Phase To Drastically Suppress Voltage Fading and Capacity Degradation of a Li- and Mn-Rich Layered Oxide Cathode for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 33863-33875.	4.0	44
80	Superior long-term cyclability of a nanocrystalline NiO anode enabled by a mechanochemical reaction-induced amorphous protective layer for Li-ion batteries. Journal of Power Sources, 2018, 397, 134-142.	4.0	44
81	A Unique Nanoflakeâ€Shape Bimetallic Ti–Nb Oxide of Superior Catalytic Effect for Hydrogen Storage of MgH ₂ . Small, 2022, 18, e2107013.	5.2	44
82	Synthesis and Characterization of a New Ternary ImideLi2Ca(NH)2. Inorganic Chemistry, 2007, 46, 517-521.	1.9	42
83	Synergetic Effects of In Situ Formed CaH ₂ and LiBH ₄ on Hydrogen Storage Properties of the Li–Mg–N–H System. Chemistry - an Asian Journal, 2013, 8, 374-384.	1.7	42
84	Nanoscaled Lithium Powders with Protection of Ionic Liquid for Highly Stable Rechargeable Lithium Metal Batteries. Advanced Science, 2019, 6, 1901776.	5.6	42
85	Amorphous Dual‣ayer Coating: Enabling High Liâ€Ion Conductivity of Nonâ€Sintered Garnetâ€Type Solid Electrolyte. Advanced Functional Materials, 2021, 31, 2009692.	7.8	42
86	Reaction Pathways Determined by Mechanical Milling Process for Dehydrogenation/Hydrogenation of the LiNH ₂ /MgH ₂ System. Chemistry - A European Journal, 2010, 16, 693-702.	1.7	40
87	Mesoporous Fe ₂ O ₃ flakes of high aspect ratio encased within thin carbon skeleton for superior lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 14178-14187.	5.2	40
88	Facile Synthesis and Superior Catalytic Activity of Nano-TiN@N–C for Hydrogen Storage in NaAlH ₄ . ACS Applied Materials & Interfaces, 2018, 10, 15767-15777.	4.0	40
89	Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li–S Batteries. Nano-Micro Letters, 2021, 13, 151.	14.4	40
90	Improvement of the hydrogen-storage performances of Li–Mg–N–H system. Journal of Materials Research, 2007, 22, 1339-1345.	1.2	39

#	Article	IF	CITATIONS
91	Synthesis, Structure Transformation, and Electrochemical Properties of Li ₂ MgSi as a Novel Anode for Liâ€lon Batteries. Advanced Functional Materials, 2014, 24, 3944-3952.	7.8	39
92	In situ formation of lithium fast-ion conductors and improved hydrogen desorption properties of the LiNH2–MgH2 system with the addition of lithium halides. Journal of Materials Chemistry A, 2014, 2, 3155.	5.2	39
93	TiO2 decorated porous carbonaceous network structures offer confinement, catalysis and thermal conductivity for effective hydrogen storage of LiBH4. Chemical Engineering Journal, 2021, 407, 127156.	6.6	39
94	Hydrogen storage properties and mechanisms of the Mg(BH4)2–NaAlH4 system. International Journal of Hydrogen Energy, 2012, 37, 17137-17145.	3.8	37
95	Role of particle size, grain size, microstrain and lattice distortion in improved dehydrogenation properties of the ball-milled Mg(AlH4)2. International Journal of Hydrogen Energy, 2013, 38, 1460-1468.	3.8	37
96	Compositional effects on the hydrogen storage properties of Mg(NH2)2–2LiH–xKH and the activity of KH during dehydrogenation reactions. Dalton Transactions, 2014, 43, 2369.	1.6	37
97	Superior Kinetic and Cyclic Performance of a 2D Titanium Carbide Incorporated 2LiH + MgB ₂ Composite toward Highly Reversible Hydrogen Storage. ACS Applied Energy Materials, 2019, 2, 4853-4864.	2.5	37
98	Triggering highly stable catalytic activity of metallic titanium for hydrogen storage in NaAlH ₄ by preparing ultrafine nanoparticles. Journal of Materials Chemistry A, 2019, 7, 4651-4659.	5.2	37
99	LiBH ₄ Nanoconfined in Porous Hollow Carbon Nanospheres with High Loading, Low Dehydrogenation Temperature, Superior Kinetics, and Favorable Reversibility. ACS Applied Energy Materials, 2020, 3, 3928-3938.	2.5	36
100	New Insights into the Effects of Zr Substitution and Carbon Additive on Li _{3–<i>x</i>} Er _{1–<i>x</i>} Zr _{<i>x</i>} Cl ₆ Halide Solid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 8095-8105.	4.0	36
101	Effects of rare earth elements substitution for Ti on the structure and electrochemical properties of a Fe-doped Ti–V-based hydrogen storage alloy. Journal of Alloys and Compounds, 2009, 484, 249-255.	2.8	35
102	Synthesis and hydrogen storage thermodynamics and kinetics of Mg(AlH4)2 submicron rods. International Journal of Hydrogen Energy, 2012, 37, 18148-18154.	3.8	35
103	Functions of MgH2 in hydrogen storage reactions of the 6LiBH4–CaH2 reactive hydride composite. Dalton Transactions, 2012, 41, 10980.	1.6	35
104	Ca(BH4)2–LiBH4–MgH2: a novel ternary hydrogen storage system with superior long-term cycling performance. Journal of Materials Chemistry A, 2013, 1, 12285.	5.2	35
105	Improved hydrogen storage performance of Ca(BH4)2: a synergetic effect of porous morphology and in situ formed TiO2. Energy and Environmental Science, 2013, 6, 847.	15.6	35
106	A Novel synthesis of MgS and its application as electrode material for lithium-ion batteries. Journal of Alloys and Compounds, 2014, 603, 158-166.	2.8	35
107	An ammonia-stabilized mixed-cation borohydride: synthesis, structure and thermal decomposition behavior. Physical Chemistry Chemical Physics, 2014, 16, 135-143.	1.3	35
108	Electrochemical performances of the Pd-added Ti-V-based hydrogen storage alloys. International Journal of Hydrogen Energy, 2008, 33, 728-734.	3.8	34

#	Article	IF	CITATIONS
109	Local defects enhanced dehydrogenation kinetics of the NaBH4-added Li–Mg–N–H system. Physical Chemistry Chemical Physics, 2011, 13, 314-321.	1.3	34
110	Superior Dehydrogenation/Hydrogenation Kinetics and Long-Term Cycling Performance of K and Rb Cocatalyzed Mg(NH ₂) ₂ -2LiH system. ACS Applied Materials & Interfaces, 2014, 6, 17024-17033.	4.0	34
111	Linking particle size to improved electrochemical performance of SiO anodes for Li-ion batteries. RSC Advances, 2017, 7, 2273-2280.	1.7	34
112	Reaction-Ball-Milling-Driven Surface Coating Strategy to Suppress Pulverization of Microparticle Si Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20591-20598.	4.0	34
113	Higher Than 90% Initial Coulombic Efficiency with Staghornâ€Coralâ€Like 3D Porous LiFeO _{2â"} <i>_x</i> as Anode Materials for Liâ€Ion Batteries. Advanced Materials, 2020, 32, e1908285.	11.1	34
114	High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH2. Journal of Magnesium and Alloys, 2022, 10, 3354-3366.	5.5	34
115	Influence of Mn content on the structural and electrochemical properties of the La0.7Mg0.3Ni4.25â~xCo0.75Mnx hydrogen storage alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 372, 163-172.	2.6	33
116	An improvement on cycling stability of Ti–V–Fe-based hydrogen storage alloys with Co substitution for Ni. Journal of Power Sources, 2008, 184, 627-632.	4.0	33
117	Pulverization mechanism of the multiphase Ti–V-based hydrogen storage electrode alloy during charge/discharge cycling. Journal of Alloys and Compounds, 2010, 489, 552-557.	2.8	33
118	A Unique Double‣ayered Carbon Nanobowlâ€Confined Lithium Borohydride for Highly Reversible Hydrogen Storage. Small, 2020, 16, e2001963.	5.2	33
119	Large Amount of Hydrogen Desorption from the Mixture of Mg(NH ₂) ₂ and LiAlH ₄ . Journal of Physical Chemistry C, 2007, 111, 19161-19164.	1.5	32
120	Improved Hydrogenâ€Storage Thermodynamics and Kinetics for an RbFâ€Doped Mg(NH ₂) ₂ –2 LiH System. Chemistry - an Asian Journal, 2013, 8, 2136-2143.	1.7	32
121	Si/Ti3SiC2 composite anode with enhanced elastic modulus and high electronic conductivity for lithium-ion batteries. Journal of Power Sources, 2019, 431, 55-62.	4.0	32
122	A Novel Multielement, Multiphase, and B ontaining SiO <i>_x</i> Composite as a Stable Anode Material for Liâ€ion Batteries. Advanced Materials Interfaces, 2019, 6, 1801631.	1.9	32
123	Investigation on the characteristics of La0.7Mg0.3Ni2.65Mn0.1Co0.75+x (x = 0.00–0.85) metal hydride electrode alloys for Ni/MH batteries Part II: Electrochemical performances. Journal of Alloys and Compounds, 2005, 388, 109-117.	2.8	31
124	Recent Development of Lithium Borohydrideâ€Based Materials for Hydrogen Storage. Advanced Energy and Sustainability Research, 2021, 2, 2100073.	2.8	31
125	A study on improving the cycling stability of (Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)4 hydrogen storage electrode alloy by means of annealing treatment. Journal of Alloys and Compounds, 2003, 348, 301-308.	2.8	30
126	Effects of triphenyl phosphate on the hydrogen storage performance of the Mg(NH2)2–2LiH system. Journal of Materials Chemistry, 2009, 19, 2141.	6.7	30

#	Article	IF	CITATIONS
127	Mechanistic investigations on significantly improved hydrogen storage performance of the Ca(BH4)2-added 2LiNH2/MgH2 system. International Journal of Hydrogen Energy, 2013, 38, 5030-5038.	3.8	30
128	Significantly improved kinetics, reversibility and cycling stability for hydrogen storage in NaAlH ₄ with the Ti-incorporated metal organic framework MIL-125(Ti). Journal of Materials Chemistry A, 2014, 2, 1847-1854.	5.2	30
129	Tuning Li 2 MO 3 phase abundance and suppressing migration of transition metal ions to improve the overall performance of Li- and Mn-rich layered oxide cathode. Journal of Power Sources, 2018, 380, 1-11.	4.0	30
130	A study on the cycling stability of the Ti–V-based hydrogen storage electrode alloys. Journal of Alloys and Compounds, 2004, 364, 271-279.	2.8	29
131	Microstructure and electrochemical properties of Ti–V-based multiphase hydrogen storage electrode alloys Ti0.8Zr0.2V2.7Mn0.5Cr0.8-xNi1.25FexTi0.8Zr0.2V2.7Mn0.5Cr0.8-xNi1.25Fex (x=0.0–0.8)(x=0.0–0.8). International Journal of Hydrogen Energy, 2007, 32, 3947-3953.	3.8	29
132	Heating Rate-Dependent Dehydrogenation in the Thermal Decomposition Process of Mg(BH ₄) ₂ ·6NH ₃ . Journal of Physical Chemistry C, 2013, 117, 16326-16335.	1.5	29
133	High-temperature failure behaviour and mechanism of K-based additives in Li–Mg–N–H hydrogen storage systems. Journal of Materials Chemistry A, 2014, 2, 7345-7353.	5.2	29
134	In situ formation of Al3Ti, MgF2 and Al and their superior synergetic effects on reversible hydrogen storage of MgH2. Catalysis Today, 2018, 318, 107-112.	2.2	29
135	Investigations on hydrogen desorption from the mixture of Mg(NH2)2 and CaH2. Journal of Alloys and Compounds, 2007, 432, 298-302.	2.8	28
136	Insight into the synergistic effect mechanism between the Li2MO3 phase and the LiMO2 phase (M = Ni,) Tj E	TQq0 0 0 2.6	rgBT /Overlo
137	Electrocarving during Electrodeposition Growth. Advanced Materials, 2018, 30, e1805686.	11.1	28
138	Synthesis process and catalytic activity of <scp> Nb ₂ O ₅ </scp> hollow spheres for reversible hydrogen storage of <scp> MgH ₂ </scp> . International Journal of Energy Research, 2021, 45, 3129-3141.	2.2	28
139	A Novel Perovskite Electron–Ion Conductive Coating to Simultaneously Enhance Cycling Stability and Rate Capability of Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ Cathode Material for Lithiumâ€ion Batteries, Small, 2021, 17, e2008132.	5.2	28
140	Structural and Electrochemical Properties of the La[sub 0.7]Mg[sub 0.3]Ni[sub 2.975â^'x]Co[sub 0.525]Mn[sub x] Hydrogen Storage Electrode Alloys. Journal of the Electrochemical Society, 2004, 151, A374.	1.3	27
141	Hydrogen storage properties and mechanisms of Mg(BH4)2â‹2NH3–xMgH2 combination systems. Journal of Alloys and Compounds, 2014, 585, 674-680.	2.8	27
142	Towards the endothermic dehydrogenation of nanoconfined magnesium borohydride ammoniate. Journal of Materials Chemistry A, 2015, 3, 11057-11065.	5.2	27
143	Effects of Cr on the structural and electrochemical properties of TiV-based two-phase hydrogen storage alloys. Journal of Alloys and Compounds, 2005, 404-406, 669-674.	2.8	26
144	Effects of Reductive Conditions on the Microstructure and Electrochemical Properties of Sol-Gel Derived LiFePO[sub 4]â·C. Journal of the Electrochemical Society, 2007, 154, A1124.	1.3	26

#	Article	IF	CITATIONS
145	Formation and Equilibrium of Ammonia in the Mg(NH ₂) ₂ â^'2LiH Hydrogen Storage System. Journal of Physical Chemistry C, 2008, 112, 1293-1298.	1.5	26
146	An eggshell-structured N-doped silicon composite anode with high anti-pulverization and favorable electronic conductivity. Journal of Power Sources, 2019, 443, 227265.	4.0	26
147	Organosiliconâ€Based Functional Electrolytes for Highâ€Performance Lithium Batteries. Advanced Energy Materials, 2021, 11, 2101057.	10.2	26
148	Fluorine-substituted Mg(BH ₄) ₂ ·2NH ₃ with improved dehydrogenation properties for hydrogen storage. Journal of Materials Chemistry A, 2015, 3, 570-578.	5.2	25
149	A Novel Tin-Bonded Silicon Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45578-45588.	4.0	25
150	Structure optimization and the structural factors for the discharge rate performance of LiFePO4/C cathode materials. Electrochimica Acta, 2010, 55, 8043-8050.	2.6	24
151	Hydrogen storage reaction over a ternary imide Li2Mg2N3H3. Physical Chemistry Chemical Physics, 2010, 12, 3108.	1.3	24
152	Destabilization of combined Ca(BH4)2 and Mg(AlH4)2 for improved hydrogen storage properties. Journal of Alloys and Compounds, 2016, 670, 135-143.	2.8	24
153	A Redox Couple Strategy Enables Longâ€Cycling Li―and Mnâ€Rich Layered Oxide Cathodes by Suppressing Oxygen Release. Advanced Materials, 2022, 34, e2108543.	11.1	24
154	A carbon-free LiFePO4 cathode material of high-rate capability prepared by a mechanical activation method. Journal of Alloys and Compounds, 2011, 509, 10161-10166.	2.8	23
155	Improved lithium storage properties of Mg2Si anode material synthesized by hydrogen-driven chemical reaction. Electrochemistry Communications, 2012, 25, 15-18.	2.3	23
156	Role of Co3O4 in improving the hydrogen storage properties of a LiBH4–2LiNH2 composite. Journal of Materials Chemistry A, 2014, 2, 11155.	5.2	23
157	Hydrogen absorption/desorption behaviors over a quaternary Mg–Ca–Li–N–H system. Journal of Power Sources, 2006, 159, 135-138.	4.0	22
158	Synthesis and Structural Characterization of a New Alkaline Earth Imide: MgCa(NH)2. European Journal of Inorganic Chemistry, 2006, 2006, 4368-4373.	1.0	22
159	Diffusion controlled hydrogen desorption reaction for the LiBH4/2LiNH2 system. Journal of Alloys and Compounds, 2009, 481, 473-479.	2.8	22
160	Ultrafine Nanocrystalline CeO ₂ @C ontaining NaAlH ₄ with Fast Kinetics and Good Reversibility for Hydrogen Storage. ChemSusChem, 2015, 8, 4180-4188.	3.6	22
161	A Unique Structural Highly Compacted Binderâ€Free Siliconâ€Based Anode with High Electronic Conductivity for Highâ€Performance Lithiumâ€Ion Batteries. Small Structures, 2022, 3, 2100174.	6.9	22
162	Influences of Ni addition on the structures and electrochemical properties of La0.7Mg0.3Ni2.65+xCo0.75Mn0.1 (x = 0.0–0.5) hydrogen storage alloys. Journal of Alloys and Compounds, 2005, 389, 281-289.	2.8	21

YONG-FENG LIU

#	Article	IF	CITATIONS
163	Mg2Si anode for Li-ion batteries: Linking structural change to fast capacity fading. Applied Physics Letters, 2014, 105, 213901.	1.5	21
164	Li–Si-alloy-assisted improvement in the intrinsic cyclability of Mg 2 Si as an anode material for Li-ion batteries. Acta Materialia, 2015, 98, 128-134.	3.8	21
165	In Situ Introduction of Li ₃ BO ₃ and NbH Leads to Superior Cyclic Stability and Kinetics of a LiBH ₄ -Based Hydrogen Storage System. ACS Applied Materials & Interfaces, 2020, 12, 893-903.	4.0	21
166	A study on improving the cycling stability of (Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)4 hydrogen storage electrode alloy by means of annealing treatment:. Journal of Alloys and Compounds, 2002, 347, 279-284.	2.8	20
167	Single-pot solvothermal strategy toward support-free nanostructured LiBH4 featuring 12Âwt% reversible hydrogen storage at 400°C. Chemical Engineering Journal, 2022, 428, 132566.	6.6	20
168	An electrochemical study of La0.4Ce0.3Mg0.3Ni2.975â^'xMnxCo0.525 (x=0.1–0.4) hydrogen storage alloys. Journal of Alloys and Compounds, 2004, 376, 196-204.	2.8	19
169	A study on the microstructures and electrochemical properties of La0.7Mg0.3Ni2.45-xCrxCo0.75Mn0.1Al0.2(x=0.00–0.20) hydrogen storage electrode alloys. International Journal of Hydrogen Energy, 2008, 33, 134-140.	3.8	19
170	Intrinsic/Extrinsic Degradation of Tiâ~'V-Based Hydrogen Storage Electrode Alloys upon Cycling. Journal of Physical Chemistry C, 2008, 112, 16682-16690.	1.5	19
171	Hydrogen storage in a Li–Al–N ternary system. International Journal of Hydrogen Energy, 2009, 34, 8101-8107.	3.8	19
172	Correlation between composition and hydrogen storage behaviors of the Li2NH-MgNH combination system. Dalton Transactions, 2011, 40, 8179.	1.6	19
173	Remarkable decrease in dehydrogenation temperature of Li–B–N–H hydrogen storage system with CoO additive. International Journal of Hydrogen Energy, 2013, 38, 13318-13327.	3.8	19
174	An ultrasound-assisted wet-chemistry approach towards uniform Mg(BH ₄) ₂ ·6NH ₃ nanoparticles with improved dehydrogenation properties. Journal of Materials Chemistry A, 2016, 4, 8366-8373.	5.2	19
175	Study on the structural and electrochemical properties of Ti-based multiphase hydrogen storage alloys. Journal of Alloys and Compounds, 2002, 345, 201-209.	2.8	18
176	Structural and electrochemical properties of hydrogen storage alloys Ti0.8Zr0.2V2.7Mn0.5Cr0.8Nix (x) Tj ETQq0	0 0 rgBT / 2.8	Overlock 10
177	SiC whisker reinforced multi-carbides composites prepared from B4C and pyrolyzed rice husks via reactive infiltration. Ceramics International, 2012, 38, 3519-3527.	2.3	18
178	Preparation and Catalytic Activity of a Novel Nanocrystalline ZrO ₂ @C Composite for Hydrogen Storage in NaAlH ₄ . Chemistry - an Asian Journal, 2016, 11, 3541-3549.	1.7	18
179	Synthesis of CsH and its effect on the hydrogen storage properties of the Mg(NH2)2-2LiH system. International Journal of Hydrogen Energy, 2016, 41, 11264-11274.	3.8	18

#	Article	IF	CITATIONS
181	Microstructure and mechanical properties of multi-carbides/(Al, Si) composites derived from porous B4C preforms by reactive melt infiltration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 551, 200-208.	2.6	17
182	TiF4-doped Mg(AlH4)2 with significantly improved dehydrogenation properties. International Journal of Hydrogen Energy, 2013, 38, 13343-13351.	3.8	17
183	Insights into the dehydrogenation reaction process of a K-containing Mg(NH ₂) ₂ –2LiH system. Dalton Transactions, 2015, 44, 18012-18018.	1.6	17
184	Nanosheet-like Lithium Borohydride Hydrate with 10 wt % Hydrogen Release at 70 °C as a Chemical Hydrogen Storage Candidate. Journal of Physical Chemistry Letters, 2019, 10, 1872-1877.	2.1	17
185	Electrochemical studies on La0.7Mg0.3Ni3.4â^'xCo0.6Mnx metal hydride electrode alloys. Materials Chemistry and Physics, 2004, 84, 171-181.	2.0	16
186	Effect of gas back pressure on hydrogen storage properties and crystal structures of Li 2 Mg(NH) 2. International Journal of Hydrogen Energy, 2014, 39, 17754-17764.	3.8	16
187	Synthesis of a Nanosized Carbon-Supported Ni Composite and Its Remarkable Catalysis for Hydrogen Desorption from the LiBH ₄ –2LiNH ₂ System. Journal of Physical Chemistry C, 2015, 119, 24760-24768.	1.5	16
188	Preparation and catalytic effect of porous Co3O4 on the hydrogen storage properties of a Li-B-N-H system. Progress in Natural Science: Materials International, 2017, 27, 132-138.	1.8	16
189	Controllable synthesis of 2D TiH2 nanoflakes with superior catalytic activity for low-temperature hydrogen cycling of NaAlH4. Chemical Engineering Journal, 2022, 427, 131546.	6.6	16
190	In-situ introduction of highly active TiO for enhancing hydrogen storage performance of LiBH4. Chemical Engineering Journal, 2022, 433, 134485.	6.6	16
191	Reaction Pathways for Hydrogen Uptake of the Li–Mg–N-Based Hydrogen Storage System. Journal of Physical Chemistry C, 2012, 116, 13551-13558.	1.5	15
192	Reversible hydrogen storage behavior of LiBH4–Mg(OH)2 composites. International Journal of Hydrogen Energy, 2014, 39, 7868-7875.	3.8	15
193	Electrochemical kinetic performance of V–Ti-based hydrogen storage alloy electrode with different particle sizes. International Journal of Hydrogen Energy, 2008, 33, 149-155.	3.8	14
194	A high-strength SiCw/SiC–Si composite derived from pyrolyzed rice husks by liquid silicon infiltration. Journal of Materials Science, 2012, 47, 4921-4927.	1.7	14
195	Hydrogen storage properties and mechanisms of a Mg(BH4)2·2NH3–NaAlH4 combination system. International Journal of Hydrogen Energy, 2016, 41, 2788-2796.	3.8	14
196	Superior catalytic activity of in situ reduced metallic Co for hydrogen storage in a Co(OH) 2 -containing LiBH 4 /2LiNH 2 composite. Materials Research Bulletin, 2018, 97, 544-552.	2.7	14
197	Remarkably Improved Cycling Stability of Boron-Strengthened Multicomponent Layer Protected Micron-Si Composite Anode. ACS Sustainable Chemistry and Engineering, 2019, 7, 19167-19175.	3.2	14
198	A nanoconfined-LiBH4 system using a unique multifunctional porous scaffold of carbon wrapped ultrafine Fe3O4 skeleton for reversible hydrogen storage with high capacity. Chemical Engineering Journal, 2022, 428, 131056.	6.6	14

#	Article	IF	CITATIONS
199	Investigation on the characteristics of La0.7Mg0.3Ni2.65Mn0.1Co0.75+x (x = 0.00–0.85) metal hydride electrode alloys for Ni/MH batteries. Journal of Alloys and Compounds, 2005, 387, 147-153.	2.8	13
200	Fabrication and mechanical properties of SiCw/MoSi2–SiC composites by liquid Si infiltration of pyrolyzed rice husk preforms with Mo additions. International Journal of Refractory Metals and Hard Materials, 2012, 35, 152-158.	1.7	13
201	Compositionâ€Dependent Reaction Pathways and Hydrogen Storage Properties of LiBH ₄ /Mg(AlH ₄) ₂ Composites. Chemistry - an Asian Journal, 2015, 10, 2452-2459.	1.7	13
202	Electrochemical properties of the ternary alloy Li 5 AlSi 2 synthesized by reacting LiH, Al and Si as an anodic material for lithium-ion batteries. Journal of Power Sources, 2015, 283, 54-60.	4.0	13
203	Synthesis of a ternary amide Li K (NH2) and a novel Li3K(NH2)4–xMgH2 combination system for hydrogen storage. Journal of Energy Chemistry, 2019, 35, 37-43.	7.1	13
204	Reversible hydrogenation/dehydrogenation performances of the Na2LiAlH6–Mg(NH2)2 system. International Journal of Hydrogen Energy, 2010, 35, 8343-8349.	3.8	12
205	A facile method for determining a suitable voltage window for an amorphous Li12Si7 anode. Electrochimica Acta, 2014, 129, 373-378.	2.6	12
206	Room Temperature Conversion of Carbon Dioxide into Fuel Gases by Mechanochemically Reacting with Metal Hydrides. ChemistrySelect, 2017, 2, 5244-5247.	0.7	12
207	New insights into the effects of NaCl and LiCl on the hydrogen storage behaviours of a 6LiBH ₄ –Mg(AlH ₄) ₂ composite. RSC Advances, 2015, 5, 12144-12151.	1.7	11
208	Ultrafast hydrogenation of magnesium enabled by tetragonal ZrO2 hierarchical nanoparticles. Materials Today Nano, 2022, 18, 100200.	2.3	11
209	Thermal dehydrogenation behaviors and mechanisms of Mg(BH4)2â^™6NH3-xLiH combination systems. International Journal of Hydrogen Energy, 2014, 39, 11999-12006.	3.8	10
210	Mechanistic insights into the remarkable catalytic activity of nanosized Co@C composites for hydrogen desorption from the LiBH4–2LiNH2 system. Catalysis Science and Technology, 2017, 7, 1838-1847.	2.1	10
211	Multifunctional Surface Construction for Longâ€Term Cycling Stability of Liâ€Rich Mnâ€Based Layered Oxide Cathode for Liâ€Ion Batteries. Small, 2022, 18, .	5.2	10
212	Improved hydrogen storage properties of combined Ca(BH4)2 and LiBH4 system motivated by addition of LaMg3 assisted with ball milling in H2. International Journal of Hydrogen Energy, 2015, 40, 12325-12335.	3.8	9
213	Improved overall hydrogen storage properties of a CsH and KH co-doped Mg(NH ₂) ₂ /2LiH system by forming mixed amides of Li–K and Cs–Mg. RSC Advances, 2017, 7, 30357-30364.	1.7	9
214	Amorphous-Carbon-Supported Ultrasmall TiB2 Nanoparticles With High Catalytic Activity for Reversible Hydrogen Storage in NaAlH4. Frontiers in Chemistry, 2020, 8, 419.	1.8	9
215	Interface Modification and Halide Substitution To Achieve High Ionic Conductivity in LiBH ₄ -Based Electrolytes for all-Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1260-1269.	4.0	9
216	Influence of annealing treatment on Laves phase compound containing a V-based BCC solid solution phase—Part I: Crystal structures. International Journal of Hydrogen Energy, 2003, 28, 389-394.	3.8	8

#	Article	IF	CITATIONS
217	LOW-TEMPERATURE HYDROGEN DESORPTION FROM LiBH₄–TiF₄ COMPOSITE. Functional Materials Letters, 2011, 04, 395-399.	0.7	8
218	Reactive infiltration processing of SiC/Fe–Si composites using preforms made of coked rice husks and SiC powder. Ceramics International, 2013, 39, 3831-3842.	2.3	8
219	Mechanistic understanding of CoO-catalyzed hydrogen desorption from a LiBH ₄ ·NH ₃ –3LiH system. Dalton Transactions, 2015, 44, 14514-14522.	1.6	8
220	Electrodeposition: Electrocarving during Electrodeposition Growth (Adv. Mater. 51/2018). Advanced Materials, 2018, 30, 1870395.	11.1	8
221	Hierarchical conformal coating enables highly stable microparticle Si anodes for advanced Li-ion batteries. Applied Materials Today, 2022, 26, 101403.	2.3	8
222	Titanium Hydride Nanoplates Enable 5 wt% of Reversible Hydrogen Storage by Sodium Alanate below 80°C. Research, 2021, 2021, 9819176.	2.8	8
223	Solid-State Sintering Strategy for Simultaneous Nanosizing and Surface Coating of Iron Oxides as High-Capacity Anodes for Long-Life Li-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 6330-6337.	2.5	7
224	Effects of Y Substitution for Ti on the Microstructure and Electrochemical Properties of Ti-V-Fe-Based Hydrogen Storage Alloys. Journal of the Electrochemical Society, 2007, 154, A1010.	1.3	6
225	Hydrogen Storage Materials. , 2013, , 377-405.		6
226	Catalyzed LiBH ₄ Hydrogen Storage System with <i>In Situ</i> Introduced Li ₃ BO ₃ and V for Enhanced Dehydrogenation and Hydrogenation Kinetics as Well as High Cycling Stability. ACS Applied Energy Materials, 2022, 5, 1226-1234.	2.5	6
227	Hydrogen Storage Properties of the Mg(NH ₃) ₆ Cl ₂ -LiH Combined System. Materials Transactions, 2011, 52, 627-634.	0.4	5
228	Synthesis and thermal decomposition properties of a novel dual-cation/anion complex hydride Li2Mg(BH4)2(NH2)2. International Journal of Hydrogen Energy, 2018, 43, 13981-13989.	3.8	5
229	1,6;2,3-Bis-BN Cyclohexane: Synthesis, Structure, and Hydrogen Release. Journal of the American Chemical Society, 2022, 144, 8434-8438.	6.6	5
230	Solid State Electrolytes: Amorphous Dual‣ayer Coating: Enabling High Liâ€Ion Conductivity of Nonâ€Sintered Garnetâ€Type Solid Electrolyte (Adv. Funct. Mater. 15/2021). Advanced Functional Materials, 2021, 31, 2170100.	7.8	4
231	Synthesis temperature dependence of the structural and electrochemical properties of Mg2Si anodic materials prepared via a hydrogen-driven chemical reaction. Ionics, 2015, 21, 2439-2445.	1.2	3
232	A novel surface modification strategy for Li-rich Mn-based layered oxide cathodes of high-capacity and high-cyclic stability by an additive of LiBH4 to the electrolyte. Functional Materials Letters, 2021, 14, 2140003.	0.7	3
233	Fabrication and Mechanical Properties of SiCw(p)/SiC-Si Composites by Liquid Si Infiltration using Pyrolysed Rice Husks and SiC Powders as Precursors. BioResources, 2014, 9, .	0.5	2
234	Oxygen Reduction Reaction: Tuning Surface Structure and Strain in Pd–Pt Core–Shell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction (Small 7/2017). Small, 2017, 13, .	5.2	2

#	Article	IF	CITATIONS
235	Editorial: Metal Hydride-Based Energy Storage and Conversion Materials. Frontiers in Chemistry, 2020, 8, 675.	1.8	2
236	Rational design of robust and universal aqueous binders to enable highly stable cyclability of high apacity conversion and alloyâ€ŧype anodes. Energy and Environmental Materials, 0, , .	7.3	2
237	Electrochemical properties of Ti0.8Zr0.2V2.7Mn0.5Cr0.8Ni1.25 hydrogen storage alloy electrodes with various Ni powder fractions. Physica Scripta, 2007, T129, 99-102.	1.2	1
238	Batteries: Highly Stable Cycling of Amorphous Li ₂ CO ₃ -Coated α-Fe ₂ O ₃ Nanocrystallines Prepared via a New Mechanochemical Strategy for Li-Ion Batteries (Adv. Funct. Mater. 3/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
239	Batteries: A New Strategy to Effectively Suppress the Initial Capacity Fading of Iron Oxides by Reacting with LiBH ₄ (Adv. Funct. Mater. 16/2017). Advanced Functional Materials, 2017, 27, .	7.8	Ο