
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4311714/publications.pdf Version: 2024-02-01

Υπικι Ηλάλολ

#	Article	IF	CITATIONS
1	An event study on broadband electric field noises and electron distributions in the lunar wake boundary. Earth, Planets and Space, 2022, 74, .	0.9	0
2	The Mars system revealed by the Martian Moons eXploration mission. Earth, Planets and Space, 2022, 74, .	0.9	11
3	A Comparative Study of Magnetic Flux Ropes in the Nightside Induced Magnetosphere of Mars and Venus. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	3
4	Particles and Photons as Drivers for Particle Release from the Surfaces of the Moon and Mercury. Space Science Reviews, 2022, 218, 1.	3.7	19
5	LatHyS global hybrid simulation of the BepiColombo second Venus flyby. Planetary and Space Science, 2022, 218, 105499.	0.9	2
6	A Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars. Geophysical Research Letters, 2022, 49, .	1.5	14
7	Lunar Photoemission Yields Inferred From ARTEMIS Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006790.	1.5	4
8	Pre-flight Calibration and Near-Earth Commissioning Results of the Mercury Plasma Particle Experiment (MPPE) Onboard MMO (Mio). Space Science Reviews, 2021, 217, 1.	3.7	32
9	ARTEMIS Observations of Lunar Nightside Surface Potentials in the Magnetotail Lobes: Evidence for Micrometeoroid Impact Charging. Geophysical Research Letters, 2021, 48, e2021GL094585.	1.5	1
10	Global Maps of Solar Wind Electron Modification by Electrostatic Waves Above the Lunar Day Side: Kaguya Observations. Geophysical Research Letters, 2021, 48, e2021GL095260.	1.5	1
11	Discrete Rising Tone Elements of Whistlerâ€Mode Waves in the Vicinity of the Moon: ARTEMIS Observations. Geophysical Research Letters, 2021, 48, .	1.5	2
12	In situ observations of ions and magnetic field around Phobos: the mass spectrum analyzer (MSA) for the Martian Moons eXploration (MMX) mission. Earth, Planets and Space, 2021, 73, .	0.9	14
13	Decrease of the interplanetary magnetic field strength on the lunar dayside and over the polar region. Icarus, 2020, 335, 113392.	1.1	1
14	Ion Jets Within Current Sheets in the Martian Magnetosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028576.	0.8	20
15	Properties of Plasma Waves Observed Upstream From Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028221.	0.8	17
16	Reflected Protons in the Lunar Wake and Their Effects on Wake Potentials. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028154.	0.8	7
17	Mapping the Lunar Wake Potential Structure With ARTEMIS Data. Journal of Geophysical Research: Space Physics, 2019, 124, 3360-3377.	0.8	15
18	MAVEN Case Studies of Plasma Dynamics in Lowâ€Altitude Crustal Magnetic Field at Mars 1: Dayside Ion Spikes Associated With Radial Crustal Magnetic Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 1239-1261.	0.8	6

#	Article	IF	CITATIONS
19	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	3.7	332
20	Locally Generated ULF Waves in the Martian Magnetosphere: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 8707-8726.	0.8	8
21	Oneâ€Hertz Waves at Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3460-3476.	0.8	10
22	Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding. Journal of Geophysical Research: Space Physics, 2018, 123, 1018-1030.	0.8	14
23	Magnetic Reconnection on Dayside Crustal Magnetic Fields at Mars: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4550-4558.	1.5	44
24	Reconnection in the Martian Magnetotail: Hallâ€ <scp>MHD</scp> With Embedded Particleâ€inâ€Cell Simulations. Journal of Geophysical Research: Space Physics, 2018, 123, 3742-3763.	0.8	20
25	Evidence for Crustal Magnetic Field Control of Ions Precipitating Into the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 8572-8586.	0.8	16
26	An Artificial Neural Network for Inferring Solar Wind Proxies at Mars. Geophysical Research Letters, 2018, 45, 10,855.	1.5	21
27	Fieldâ€Aligned Potentials at Mars From MAVEN Observations. Geophysical Research Letters, 2018, 45, 10,119.	1.5	31
28	A Tenuous Lunar Ionosphere in the Geomagnetic Tail. Geophysical Research Letters, 2018, 45, 9450-9459.	1.5	12
29	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	1.1	216
30	MAVEN Observations of Solar Windâ€Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 4129-4149.	0.8	40
31	The Twisted Configuration of the Martian Magnetotail: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4559-4568.	1.5	66
32	MARSIS Observations of the Martian Nightside Ionosphere During the September 2017 Solar Event. Geophysical Research Letters, 2018, 45, 7960-7967.	1.5	23
33	Characterization of turbulence in the Mars plasma environment with MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 656-674.	0.8	30
34	Structure, dynamics, and seasonal variability of the Marsâ€solar wind interaction: MAVEN Solar Wind Ion Analyzer inâ€flight performance and science results. Journal of Geophysical Research: Space Physics, 2017, 122, 547-578.	0.8	191
35	MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field. Journal of Geophysical Research: Space Physics, 2017, 122, 1083-1101.	0.8	19
36	Kaguya observations of the lunar wake in the terrestrial foreshock: Surface potential change by bow-shock reflected ions. Icarus, 2017, 293, 45-51.	1.1	19

#	Article	IF	CITATIONS
37	Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 5114-5131.	0.8	40
38	Waves in the innermost open boundary layer formed by dayside magnetopause reconnection. Journal of Geophysical Research: Space Physics, 2017, 122, 3291-3307.	0.8	14
39	Photoemission and electrostatic potentials on the dayside lunar surface in the terrestrial magnetotail lobes. Geophysical Research Letters, 2017, 44, 5276-5282.	1.5	13
40	MAVEN observations of tail current sheet flapping at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 4308-4324.	0.8	37
41	MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields. Journal of Geophysical Research: Space Physics, 2017, 122, 828-842.	0.8	21
42	Highâ€Altitude Closed Magnetic Loops at Mars Observed by MAVEN. Geophysical Research Letters, 2017, 44, 11,229.	1.5	26
43	Flows, Fields, and Forces in the Marsâ€Solar Wind Interaction. Journal of Geophysical Research: Space Physics, 2017, 122, 11,320.	0.8	64
44	Dynamic response of the Martian ionosphere to an interplanetary shock: Mars Express and MAVEN observations. Geophysical Research Letters, 2017, 44, 9116-9123.	1.5	14
45	On the origins of magnetic flux ropes in nearâ€Mars magnetotail current sheets. Geophysical Research Letters, 2017, 44, 7653-7662.	1.5	28
46	MAVEN observations of electronâ€induced whistler mode waves in the Martian magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 9717-9731.	0.8	27
47	MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophysical Research Letters, 2016, 43, 4816-4824.	1.5	14
48	Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN. Geophysical Research Letters, 2016, 43, 1426-1434.	1.5	36
49	MAVEN observations of partially developed Kelvinâ€Helmholtz vortices at Mars. Geophysical Research Letters, 2016, 43, 4763-4773.	1.5	38
50	MAVEN observation of an obliquely propagating lowâ€frequency wave upstream of Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 2374-2389.	0.8	19
51	MAVEN observations of energyâ€time dispersed electron signatures in Martian crustal magnetic fields. Geophysical Research Letters, 2016, 43, 939-944.	1.5	18
52	Magnetotail dynamics at Mars: Initial MAVEN observations. Geophysical Research Letters, 2015, 42, 8828-8837.	1.5	52
53	Response of Mars O ⁺ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN dataâ€based models. Geophysical Research Letters, 2015, 42, 9095-9102.	1.5	47
54	Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophysical Research Letters, 2015, 42, 8942-8950.	1.5	143

#	Article	IF	CITATIONS
55	MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophysical Research Letters, 2015, 42, 8901-8909.	1.5	78
56	Timeâ€dispersed ion signatures observed in the Martian magnetosphere by MAVEN. Geophysical Research Letters, 2015, 42, 8910-8916.	1.5	25
57	Magnetic reconnection in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8838-8845.	1.5	59
58	A new view on the solar wind interaction with the Moon. Geoscience Letters, 2015, 2, .	1.3	37
59	Marsward and tailward ions in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8925-8932.	1.5	34
60	Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophysical Research Letters, 2015, 42, 8933-8941.	1.5	17
61	The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 2015, 42, 9142-9148.	1.5	115
62	Statistical characterization of the foremoon particle and wave morphology: ARTEMIS observations. Journal of Geophysical Research: Space Physics, 2015, 120, 4907-4921.	0.8	29
63	Electrons on closed field lines of lunar crustal fields in the solar wind wake. Icarus, 2015, 250, 238-248.	1.1	8
64	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	6.0	166
65	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	6.0	90
66	Hot-Proton Interactions with the Surface andÂMagnetic Anomalies of the Moon. Springer Theses, 2015, , 91-107.	0.0	0
67	Interactions of Earth's Magnetotail Plasma with the Surface, Plasma, and Magnetic Anomalies of the Moon. Springer Theses, 2015, , .	0.0	6
68	Extended lunar precursor regions: Electronâ€wave interaction. Journal of Geophysical Research: Space Physics, 2014, 119, 9160-9173.	0.8	15
69	Backscattered energetic neutral atoms from the Moon in the Earth's plasma sheet observed by Chandarayaanâ€1/Subâ€keV Atom Reflecting Analyzer instrument. Journal of Geophysical Research: Space Physics, 2014, 119, 3573-3584.	0.8	22
70	ARTEMIS observations of lunar dayside plasma in the terrestrial magnetotail lobe. Journal of Geophysical Research: Space Physics, 2013, 118, 3042-3054.	0.8	23
71	Smallâ€scale magnetic fields on the lunar surface inferred from plasma sheet electrons. Geophysical Research Letters, 2013, 40, 3362-3366.	1.5	7
72	Nongyrotropic electron velocity distribution functions near the lunar surface. Journal of Geophysical Research, 2012, 117, .	3.3	9

#	Article	IF	CITATIONS
73	Interaction between terrestrial plasma sheet electrons and the lunar surface: SELENE (Kaguya) observations. Geophysical Research Letters, 2010, 37, .	1.5	13