Alla Zamyatina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4311597/publications.pdf

Version: 2024-02-01

471509 345221 1,451 44 17 36 citations h-index g-index papers 55 55 55 1627 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemistry of Lipidâ€A: At the Heart of Innate Immunity. Chemistry - A European Journal, 2015, 21, 500-519.	3.3	193
2	Biosynthesis Pathway of ADP-l-glycero- \hat{l}^2 -d-manno-Heptose in Escherichia coli. Journal of Bacteriology, 2002, 184, 363-369.	2.2	177
3	Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature, 2018, 561, 122-126.	27.8	165
4	ALPK1- and TIFA-Dependent Innate Immune Response Triggered by the Helicobacter pylori Type IV Secretion System. Cell Reports, 2017, 20, 2384-2395.	6.4	139
5	Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Frontiers in Immunology, 2020, 11, 585146.	4.8	94
6	Efficient chemical synthesis of both anomers of ADP l-glycero- and d-glycero-d-manno-heptopyranose. Carbohydrate Research, 2003, 338, 2571-2589.	2.3	59
7	Efficient Chemical Synthesis of the Two Anomers of ADP-L-glycero- andD-glycero-D-manno-Heptopyranose Allows the Determination of the Substrate Specificities of Bacterial Heptosyltransferases. Angewandte Chemie - International Edition, 2000, 39, 4150-4153.	13.8	56
8	An Iron-Containing Dodecameric Heptosyltransferase Family Modifies Bacterial Autotransporters in Pathogenesis. Cell Host and Microbe, 2014, 16, 351-363.	11.0	47
9	Conformationally Constrained Lipid A Mimetics for Exploration of Structural Basis of TLR4/MD-2 Activation by Lipopolysaccharide. ACS Chemical Biology, 2013, 8, 2423-2432.	3.4	45
10	ADPâ€heptose is a newly identified pathogenâ€associated molecular pattern of <i>Shigella flexneri</i> EMBO Reports, 2018, 19, .	4.5	34
11	A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family. ELife, 2014, 3, .	6.0	30
12	Development of αGlcN(1â†"1)αMan-Based Lipid A Mimetics as a Novel Class of Potent Toll-like Receptor 4 Agonists. Journal of Medicinal Chemistry, 2014, 57, 8056-8071.	6.4	25
13	Hemoglobin Enhances the Biological Activity of Synthetic and Natural Bacterial (Endotoxic) Virulence Factors: A General Principle. Medicinal Chemistry, 2008, 4, 520-525.	1.5	22
14	Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. , 2022, 230, 107970.		20
15	Synthesis of C-glycosides related to glycero-β-d-manno-heptoses. Tetrahedron: Asymmetry, 2005, 16, 167-175.	1.8	19
16	Aminosugar-based immunomodulator lipid A: synthetic approaches. Beilstein Journal of Organic Chemistry, 2018, 14, 25-53.	2.2	19
17	Chemical Synthesis of <i>Burkholderia</i> Lipidâ€A Modified with Glycosyl Phosphodiesterâ€Linked 4â€Aminoâ€4â€deoxyâ€Î²â€ <scp>L</scp> â€arabinose and Its Immunomodulatory Potential. Chemistry - A Europ Journal, 2015, 21, 4102-4114.	oe a r8	18
18	Investigation on the agonistic and antagonistic biological activities of synthetic Chlamydia lipid A and its use in in vitro enzymatic assays. Journal of Endotoxin Research, 2007, 13, 126-132.	2.5	17

#	Article	IF	Citations
19	Synthetic glycan-based TLR4 agonists targeting caspase-4/11 for the development of adjuvants and immunotherapeutics. Chemical Science, 2018, 9, 3957-3963.	7.4	17
20	Synthesis and purity assessment of tetra- and pentaacyl lipid A of Chlamydia containing (R)-3-hydroxyicosanoic acid. Tetrahedron, 2004, 60, 12113-12137.	1.9	15
21	Anti-endotoxic activity and structural basis for human MD-2·TLR4 antagonism of tetraacylated lipid A mimetics based on \hat{l}^2 GlcN($l\hat{a}\dagger^*l$) $\hat{l}\pm$ GlcN scaffold. Innate Immunity, 2015, 21, 490-503.	2.4	15
22	Chemical synthesis of the innate immune modulator $\hat{a}\in$ bacterial d - glycero - $\hat{1}^2$ - d - mannoheptose-1,7-bisphosphate (HBP). Tetrahedron Letters, 2017, 58, 2826-2829.	1.4	15
23	Disaccharideâ€Based Anionic Amphiphiles as Potent Inhibitors of Lipopolysaccharideâ€Induced Inflammation. ChemMedChem, 2018, 13, 2317-2331.	3.2	15
24	Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation. Pharmaceutics, 2021, 13, 501.	4. 5	15
25	Shortening the Lipid A Acyl Chains of Bordetella pertussis Enables Depletion of Lipopolysaccharide Endotoxic Activity. Vaccines, 2020, 8, 594.	4.4	13
26	Synthesis of C-glycosidically linked ADP glycero- \hat{l}^2 -d-manno-heptose analogues. Tetrahedron: Asymmetry, 2007, 18, 115-122.	1.8	11
27	Synthesis of a deoxy analogue of ADP l-glycero-d-manno-heptose. Carbohydrate Research, 2007, 342, 2537-2545.	2.3	11
28	Crystal and molecular structure of methyl l-glycero- \hat{l} ±-d-manno-heptopyranoside, and synthesis of $1\hat{a}$ †'7 linked l-glycero-d-manno-heptobiose and its methyl \hat{l} ±-glycoside. Carbohydrate Research, 2011, 346, 1739-1746.	2.3	11
29	A convenient synthesis of GDP d-glycero-α-d-manno-heptopyranose. Carbohydrate Research, 2004, 339, 147-151.	2.3	10
30	Efficient Synthesis of 4-Amino-4-deoxy-l-arabinose and Spacer-Equipped 4-Amino-4-deoxy-l-arabinopyranosides by Transglycosylation Reactions. Synthesis, 2010, 2010, 3143-3151.	2.3	10
31	Species and mediator specific TLR4 antagonism in primary human and murine immune cells by î²GlcN(1↔1)αGlc based lipid A mimetics. Molecular Immunology, 2015, 67, 636-641.	2.2	10
32	Synthesis of Zwitterionic 1,1′-Glycosylphosphodiester: A Partial Structure of Galactosamine-Modified Francisella Lipid A. Organic Letters, 2014, 16, 3772-3775.	4.6	9
33	Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Frontiers in Immunology, 2021, 12, 631797.	4.8	8
34	The synthesis of		

3

#	Article	IF	CITATIONS
37	Stereoselective Synthesis of α- and β- <scp> </scp> -Ara4N Glycosyl H-Phosphonates and a Neoglycoconjugate Comprising Glycosyl Phosphodiester Linked β- <scp> </scp> -Ara4N. Organic Letters, 2017, 19, 78-81.	4.6	5
38	Lipid A mimetics based on unnatural disaccharide scaffold as potent TLR4 agonists for prospective immunotherapeutics and adjuvants. Chemistry - A European Journal, 2022, , .	3.3	4
39	Chemical Synthesis of Lipopolysaccharide Core. , 2011, , 131-161.		2
40	Characterization of the physiological substrate for lipopolysaccharide heptosyltransferases I and II. Journal of Endotoxin Research, 2001, 7, 263-270.	2.5	2
41	Chemistry of Lipidâ€A: At the Heart of Innate Immunity. Chemistry - A European Journal, 2015, 21, 477-477.	3.3	1
42	Synthesis of bioactive lipid A and analogs. , 2020, , 51-102.		0
43	CHEMICAL SYNTHESIS AND BIOSYNTHETIC PATHWAYS OF NUCLEOTIDE-ACTIVATED HEPTOSES., 2002, , .		0
44	ALPK1 and TIFA Dependent Innate Immune Response Triggered by the <i>Helicobacter pylori </i> Type IV Secretion System. SSRN Electronic Journal, 0, , .	0.4	0