List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/431144/publications.pdf Version: 2024-02-01

Υληγιίη Ζηλο

#	Article	IF	CITATIONS
1	Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry. Critical Reviews in Food Science and Nutrition, 2023, 63, 11044-11062.	5.4	3
2	Investigation of mechanisms and approaches for improving hydrophobicity of molded pulp biocomposites produced from apple pomace. Food and Bioproducts Processing, 2022, 133, 1-15.	1.8	7
3	Investigation of hot-air assisted continuous radio frequency drying for improving drying efficiency and reducing shell cracks of inshell hazelnuts: The relationship between cracking level and nut quality. Food and Bioproducts Processing, 2021, 125, 46-56.	1.8	19
4	Effect of high hydrostatic pressure conditions on the composition, morphology, rheology, thermal behavior, color, and stability of black garlic melanoidins. Food Chemistry, 2021, 337, 127790.	4.2	20
5	Effects of salting-in/out-assisted extractions on structural, physicochemical and functional properties of Tenebrio molitor larvae protein isolates. Food Chemistry, 2021, 338, 128158.	4.2	36
6	Hydroxypropyl methylcellulose or soy protein isolateâ€based edible, waterâ€soluble, and antioxidant films for safflower oil packaging. Journal of Food Science, 2021, 86, 129-139.	1.5	13
7	Development of effective drying strategy with a combination of radio frequency (RF) and convective hot-air drying for inshell hazelnuts and enhancement of nut quality. Innovative Food Science and Emerging Technologies, 2021, 67, 102555.	2.7	29
8	Optimization of bleaching process for cellulose extraction from apple and kale pomace and evaluation of their potentials as film forming materials. Carbohydrate Polymers, 2021, 253, 117225.	5.1	37
9	Optimization of High Hydrostatic Pressure Treatments on Soybean Protein Isolate to Improve Its Functionality and Evaluation of Its Application in Yogurt. Foods, 2021, 10, 667.	1.9	16
10	Development, characterization and validation of starch based biocomposite films reinforced by cellulose nanofiber as edible muffin liner. Food Packaging and Shelf Life, 2021, 28, 100655.	3.3	25
11	Investigation of ecoâ€friendly chemical treatments of apple pomace for producing high quality molded pulp biocomposite. Journal of Applied Polymer Science, 2021, 138, 51363.	1.3	6
12	Fabrication of thermally and mechanically stable superhydrophobic coatings for cellulose-based substrates with natural and edible ingredients for food applications. Food Hydrocolloids, 2021, 120, 106877.	5.6	26
13	Antimicrobial, antioxidant and physical properties of chitosan film containing Akebia trifoliata (Thunb.) Koidz. peel extract/montmorillonite and its application. Food Chemistry, 2021, 361, 130111.	4.2	40
14	Mechanisms and performance of cellulose nanocrystals Pickering emulsion chitosan coatings for reducing ethylene production and physiological disorders in postharvest †Bartlett' pears (Pyrus) Tj ETQq0 (0 04r g BT /(Ov ed ock 10 T
15	A review of cellulose nanomaterials incorporated fruit coatings with improved barrier property and stability: Principles and applications. Journal of Food Process Engineering, 2020, 43, e13344.	1.5	20
16	Investigation of physicochemical, nutritional, and sensory qualities of muffins incorporated with dried brewer's spent grain flours as a source of dietary fiber and protein. Journal of Food Science, 2020, 85, 3943-3953.	1.5	27
17	Hot-air assisted continuous radio frequency heating for improving drying efficiency and retaining quality of inshell hazelnuts (Corylus avellana L. cv. Barcelona). Journal of Food Engineering, 2020, 279, 109956.	2.7	33
18	The preservation performance of chitosan coating with different molecular weight on strawberry using electrostatic spraying technique. International Journal of Biological Macromolecules, 2020, 151, 278-285.	3.6	62

#	Article	IF	CITATIONS
19	Optimization of microwave vacuum drying of okra and the study of the product quality. Journal of Food Process Engineering, 2020, 43, e13337.	1.5	15
20	Investigation of hot-air assisted radio frequency (HARF) dielectric heating for improving drying efficiency and ensuring quality of dried hazelnuts (Corylus avellana L.). Food and Bioproducts Processing, 2020, 120, 179-190.	1.8	24
21	Delaying ripening of â€~Bartlett' pears (Pyrus communis) during long-term simulated industrial cold storage: Mechanisms and validation of chitosan coatings with cellulose nanocrystals Pickering emulsions. LWT - Food Science and Technology, 2020, 122, 109053.	2.5	19
22	Hot Air-Assisted Radio Frequency Stabilizing Treatment Effects on Physicochemical Properties, Enzyme Activities and Nutritional Quality of Wheat Germ. Food and Bioprocess Technology, 2020, 13, 901-910.	2.6	19
23	Structure, physicochemical and bioactive properties of dietary fibers from Akebia trifoliata (Thunb.) Koidz. seeds using ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction. Food Research International, 2020, 136, 109348.	2.9	35
24	Edible Coatings for Extending Shelf-Life of Fresh Produce During PostharvestÂStorage. , 2019, , 506-510.		5
25	Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation. International Journal of Biological Macromolecules, 2019, 139, 1232-1238.	3.6	70
26	Effect of dietary fiber-rich fractions on texture, thermal, water distribution, and gluten properties of frozen dough during storage. Food Chemistry, 2019, 297, 124902.	4.2	66
27	Physicochemical characteristics and emulsification properties of cellulose nanocrystals stabilized O/W pickering emulsions with high -OSO3- groups. Food Hydrocolloids, 2019, 96, 267-277.	5.6	38
28	Effect of molecular weight on the properties of chitosan films prepared using electrostatic spraying technique. Carbohydrate Polymers, 2019, 212, 197-205.	5.1	54
29	Effect of deacetylation degree on properties of Chitosan films using electrostatic spraying technique. Food Control, 2019, 97, 25-31.	2.8	23
30	Preparation, Optimization, and Characterization of Natural Apple Essence‣oaded Liposomes. Journal of Food Science, 2019, 84, 540-547.	1.5	8
31	Investigation of drying conditions on bioactive compounds, lipid oxidation, and enzyme activity of Oregon hazelnuts (Corylus avellana L.). LWT - Food Science and Technology, 2018, 90, 526-534.	2.5	42
32	Moisture Adsorption Isotherm and Storability of Hazelnut Inshells and Kernels Produced in Oregon, USA. Journal of Food Science, 2018, 83, 340-348.	1.5	10
33	Mushroom polysaccharidesâ€incorporated cellulose nanofiber films with improved mechanical, moisture barrier, and antioxidant properties. Journal of Applied Polymer Science, 2018, 135, 46166.	1.3	16
34	Microwaveâ€assisted degradation of chitosan with hydrogen peroxide treatment using Boxâ€Behnken design for enhanced antibacterial activity. International Journal of Food Science and Technology, 2018, 53, 156-165.	1.3	17
35	Degradation kinetics and antioxidant capacity of anthocyanins in air-impingement jet dried purple potato slices. Food Research International, 2018, 105, 121-128.	2.9	66

 $_{36}$ Investigation of the mechanisms and strategies for reducing shell cracks of hazelnut (Corylus) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 62 $^{-2.5}$

#	Article	IF	CITATIONS
37	Evaluation of Consumer Acceptance and Quality of Thermally and High Hydrostatic Pressure Processed Blueberries and Cherries Subjected to Cellulose Nanofiber (CNF) Incorporated Water-Resistant Coating Treatment. Food and Bioprocess Technology, 2018, 11, 1412-1421.	2.6	10
38	Effect of bilayer coating composed of polyvinyl alcohol, chitosan, and sodium alginate on salted duck eggs. International Journal of Food Properties, 2018, 21, 868-878.	1.3	7
39	Cellulose nanocrystals Pickering emulsion incorporated chitosan coatings for improving storability of postharvest Bartlett pears (Pyrus communis) during long-term cold storage. Food Hydrocolloids, 2018, 84, 229-237.	5.6	67
40	Quality and Consumer Acceptance of Berry Fruit Pomace–Fortified Specialty Mustard. Journal of Food Science, 2018, 83, 1921-1932.	1.5	8
41	Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chemistry, 2017, 221, 1860-1866.	4.2	45
42	Preparation and characterization of cellulose nanocrystals films incorporated with essential oil loaded β-chitosan beads. Food Hydrocolloids, 2017, 69, 164-172.	5.6	41
43	Investigation of the Feasibility of Radio Frequency Energy for Controlling Insects in Milled Rice. Food and Bioprocess Technology, 2017, 10, 781-788.	2.6	41
44	Cellulose Nanocrystal Reinforced Chitosan Coatings for Improving the Storability of Postharvest Pears Under Both Ambient and Cold Storages. Journal of Food Science, 2017, 82, 453-462.	1.5	66
45	Functional properties, bioactive compounds, and inÂvitro gastrointestinal digestion study of dried fruit pomace powders as functional food ingredients. LWT - Food Science and Technology, 2017, 80, 136-144.	2.5	95
46	Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate). Food Chemistry, 2017, 232, 359-368.	4.2	78
47	Fruit pomace as a source of alternative fibers and cellulose nanofiber as reinforcement agent to create molded pulp packaging boards. Composites Part A: Applied Science and Manufacturing, 2017, 99, 48-57.	3.8	27
48	Development, characterization, and validation of chitosan adsorbed cellulose nanofiber (CNF) films as water resistant and antibacterial food contact packaging. LWT - Food Science and Technology, 2017, 83, 132-140.	2.5	66
49	Structure-based modelling of hemocyanin allergenicity in squid and its response to high hydrostatic pressure. Scientific Reports, 2017, 7, 40021.	1.6	19
50	The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate. International Journal of Biological Macromolecules, 2017, 96, 334-339.	3.6	67
51	Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydrate Polymers, 2017, 157, 1246-1253.	5.1	97
52	Preparation, characterization and toxicology properties of \hat{I}_{\pm} - and \hat{I}_{\pm} -chitosan Maillard reaction products nanoparticles. International Journal of Biological Macromolecules, 2016, 89, 287-296.	3.6	26
53	Optimization of solvent and ultrasound-assisted extraction for different anthocyanin rich fruit and their effects on anthocyanin compositions. LWT - Food Science and Technology, 2016, 72, 229-238.	2.5	97
54	Development and preliminary field validation of water-resistant cellulose nanofiber based coatings with high surface adhesion and elasticity for reducing cherry rain-cracking. Scientia Horticulturae, 2016, 200, 161-169.	1.7	38

#	Article	IF	CITATIONS
55	Impact of Far-Infrared Radiation Assisted Heat Pump Drying on Moisture Distribution and Rehydration Kinetics of Squid Fillets During Rehydration. Journal of Aquatic Food Product Technology, 2016, 25, 147-155.	0.6	6
56	Structure and IgE-binding properties of α-casein treated by high hydrostatic pressure, UV-C, and far-IR radiations. Food Chemistry, 2016, 204, 46-55.	4.2	34
57	In vitro anti-inflammatory and antioxidant activities and protein quality of high hydrostatic pressure treated squids (Todarodes pacificus). Food Chemistry, 2016, 203, 258-266.	4.2	28
58	Preparation, characterization and evaluation of antibacterial activity of catechins and catechins–Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydrate Polymers, 2016, 137, 82-91.	5.1	107
59	Effects of Hot Air-assisted Radio Frequency Heating on Quality and Shelf-life of Roasted Peanuts. Food and Bioprocess Technology, 2016, 9, 308-319.	2.6	60
60	Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles. Food Chemistry, 2016, 194, 12-19.	4.2	95
61	AFM and NMR imaging of squid tropomyosin Tod p1 subjected to high hydrostatic pressure: evidence for relationships among topography, characteristic domain and allergenicity. RSC Advances, 2015, 5, 73207-73216.	1.7	13
62	Effect of Single―and Two ycle High Hydrostatic Pressure Treatments on Water Properties, Physicochemical and Microbial Qualities of Minimally Processed Squids (<i>Todarodes pacificus</i>). Journal of Food Science, 2015, 80, E1012-20.	1.5	21
63	Synthesis and characterization of novel trialdehyde, tribenzylamine, and triamine from triolein. European Journal of Lipid Science and Technology, 2015, 117, 1179-1184.	1.0	1
64	Impact of Radio Frequency, Microwaving, and High Hydrostatic Pressure at Elevated Temperature on the Nutritional and Antinutritional Components in Black Soybeans. Journal of Food Science, 2015, 80, C2732-9.	1.5	32
65	Influences of High Hydrostatic Pressure, Microwave Heating, and Boiling on Chemical Compositions, Antinutritional Factors, Fatty Acids, In Vitro Protein Digestibility, and Microstructure of Buckwheat. Food and Bioprocess Technology, 2015, 8, 2235-2245.	2.6	72
66	Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. Journal of Food Science and Technology, 2015, 52, 5568-5578.	1.4	61
67	Significant improvements in the characterization of volatile compound profiles in squid using simultaneous distillation-extraction and GC×GC-TOFMS. CYTA - Journal of Food, 2015, 13, 434-444.	0.9	10
68	Allergenic response to squid (Todarodes pacificus) tropomyosin Tod p1 structure modifications induced by high hydrostatic pressure. Food and Chemical Toxicology, 2015, 76, 86-93.	1.8	58
69	Preparation, characterization and evaluation of tea polyphenol–Zn complex loaded β-chitosan nanoparticles. Food Hydrocolloids, 2015, 48, 260-273.	5.6	79
70	Impact of Acidity and Metal Ion on the Antibacterial Activity and Mechanisms of β- and α-Chitosan. Applied Biochemistry and Biotechnology, 2015, 175, 2972-2985.	1.4	12
71	Investigation of radio frequency heating uniformity of wheat kernels by using the developed computer simulation model. Food Research International, 2015, 71, 41-49.	2.9	60
72	Characterization of Volatile Compounds in Microfiltered Pasteurized Milk Using Solid-Phase Microextraction and GC×GC-TOFMS. International Journal of Food Properties, 2015, 18, 2193-2212.	1.3	37

#	Article	IF	CITATIONS
73	Investigation of the Mechanisms of Using Metal Complexation and Cellulose Nanofiber/Sodium Alginate Layer-by-Layer Coating for Retaining Anthocyanin Pigments in Thermally Processed Blueberries in Aqueous Media. Journal of Agricultural and Food Chemistry, 2015, 63, 3031-3038.	2.4	27
74	Effect of different drying methods on the myosin structure, amino acid composition, protein digestibility and volatile profile of squid fillets. Food Chemistry, 2015, 171, 168-176.	4.2	159
75	High intensity ultrasound assisted heating to improve solubility, antioxidant and antibacterial properties of chitosan-fructose Maillard reaction products. LWT - Food Science and Technology, 2015, 60, 253-262.	2.5	74
76	Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 2014, 92, 46-53.	2.9	118
77	Alkali- or acid-induced changes in structure, moisture absorption ability and deacetylating reaction of β-chitin extracted from jumbo squid (Dosidicus gigas) pens. Food Chemistry, 2014, 152, 355-362.	4.2	22
78	Investigation of different coating application methods on the performance of edible coatings on Mozzarella cheese. LWT - Food Science and Technology, 2014, 56, 1-8.	2.5	101
79	Optimization of the fermentation conditions of Rhizopus japonicus M193 for the production of chitin deacetylase and chitosan. Carbohydrate Polymers, 2014, 101, 57-67.	5.1	46
80	Effects of Different Organic Weed Management Strategies on the Physicochemical, Sensory, and Antioxidant Properties of Machineâ€Harvested Blackberry Fruits. Journal of Food Science, 2014, 79, S2107-16.	1.5	18
81	Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. Journal of Food Science, 2014, 79, S1811-22.	1.5	105
82	The contribution of acidulant to the antibacterial activity of acid soluble α- and β-chitosan solutions and their films. Applied Microbiology and Biotechnology, 2014, 98, 425-435.	1.7	13
83	Antihypertensive effect of few-flower wild rice (Zizania latifolia Turcz.) in spontaneously hypertensive rats. Food Science and Biotechnology, 2014, 23, 439-444.	1.2	7
84	Use of Sodium Dodecyl Sulfate Pretreatment and 2â€stage Curing for Improved Quality of Salted Duck Eggs. Journal of Food Science, 2014, 79, E354-61.	1.5	16
85	Optimized production of Serratia marcescens B742 mutants for preparing chitin from shrimp shells powders. International Journal of Biological Macromolecules, 2014, 69, 319-328.	3.6	5
86	Impact of the Structural Differences between α- and β-Chitosan on Their Depolymerizing Reaction and Antibacterial Activity. Journal of Agricultural and Food Chemistry, 2013, 61, 8783-8789.	2.4	34
87	Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chemistry, 2013, 138, 356-365.	4.2	260
88	Effect of Different Drying Methods and Storage Time on the Retention of Bioactive Compounds and Antibacterial Activity of Wine Grape Pomace (Pinot Noir and Merlot). Journal of Food Science, 2012, 77, H192-201.	1.5	92
89	Physicochemical, Microstructural, and Antibacterial Properties of βâ€Chitosan and Kudzu Starch Composite Films. Journal of Food Science, 2012, 77, E280-6.	1.5	41
90	Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation. Carbohydrate Research, 2012, 362, 13-20.	1.1	83

#	Article	IF	CITATIONS
91	Comparison in antioxidant action between α-chitosan and β-chitosan at a wide range of molecular weight and chitosan concentration. Bioorganic and Medicinal Chemistry, 2012, 20, 2905-2911.	1.4	42
92	Effect of Molecular Weight, Acid, and Plasticizer on the Physicochemical and Antibacterial Properties of βâ€Chitosan Based Films. Journal of Food Science, 2012, 77, E127-36.	1.5	66
93	Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Research International, 2011, 44, 2712-2720.	2.9	266
94	Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biology and Technology, 2011, 59, 71-79.	2.9	236
95	Characteristics of deacetylation and depolymerization of β-chitin from jumbo squid (Dosidicus gigas) pens. Carbohydrate Research, 2011, 346, 1876-1884.	1.1	52
96	Compressionâ€molded biocomposite boards from red and white wine grape pomaces. Journal of Applied Polymer Science, 2011, 119, 2834-2846.	1.3	38
97	Effect of Edible Coating on Volatile Compounds of Hardy Kiwifruit during Storage. ACS Symposium Series, 2010, , 79-94.	0.5	7
98	Feasibility of creating compressionâ€molded biocomposite boards from berry fruit pomaces. Journal of Applied Polymer Science, 2010, 115, 127-136.	1.3	14
99	Quality enhancement in fresh and frozen lingcod (Ophiodon elongates) fillets by employment of fish oil incorporated chitosan coatings. Food Chemistry, 2010, 119, 524-532.	4.2	143
100	Effect of combined chitosan-krill oil coating and modified atmosphere packaging on the storability of cold-stored lingcod (Ophiodon elongates) fillets. Food Chemistry, 2010, 122, 1035-1042.	4.2	84
101	Edible Coatings for Enhancing Quality and Health Benefits of Berry Fruits. ACS Symposium Series, 2010, , 281-292.	0.5	3
102	Effects of refrigerated storage and processing technologies on the bioactive compounds and antioxidant capacities of †Marion' and †Evergreen' blackberries. LWT - Food Science and Technology, 2010, 43, 1253-1264.	2.5	76
103	Stabilization of anthocyanins on thermally processed red D'Anjou pears through complexation and polymerization. LWT - Food Science and Technology, 2009, 42, 1144-1152.	2.5	19
104	Effects of pulsed-vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). Journal of Food Engineering, 2008, 85, 84-93.	2.7	132
105	Postharvest quality of hardy kiwifruit (Actinidia arguta â€~Ananasnaya') associated with packaging and storage conditions. Postharvest Biology and Technology, 2008, 47, 338-345.	2.9	95
106	Color Quality of Fresh and Processed Strawberries. ACS Symposium Series, 2008, , 18-42.	0.5	7
107	Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Comprehensive Reviews in Food Science and Food Safety, 2007, 6, 60-75.	5.9	460
108	Retaining Green Pigments on Thermally Processed Peels-on Green Pears. Journal of Food Science, 2006, 70, C568-C574.	1.5	23

#	Article	IF	CITATIONS
109	Development and Characterization of Edible Films from Cranberry Pomace Extracts. Journal of Food Science, 2006, 71, E95.	1.5	69
110	Antifungal Coatings on Fresh Strawberries (Fragaria × ananassa) to Control Mold Growth During Cold Storage. Journal of Food Science, 2005, 70, M202-M207.	1.5	117
111	Nutritional, Sensory, and Physicochemical Properties of Vitamin E- and Mineral-fortified Fresh-cut Apples by Use of Vacuum Impregnation. Journal of Food Science, 2005, 70, S593-S599.	1.5	25
112	Distance education is as effective as traditional education when teaching food safetys. Journal of Foodservice, 2004, 4, 1-8.	1.5	20
113	Incorporation of a High Concentration of Mineral or Vitamin into Chitosan-Based Films. Journal of Agricultural and Food Chemistry, 2004, 52, 1933-1939.	2.4	308