
Zivko L Nikolov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4311431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Binding behavior of spike protein and receptor binding domain of the SARS-CoV-2 virus at different environmental conditions. Scientific Reports, 2022, 12, 789.	3.3	5
2	Process development of enzymatically-generated algal protein hydrolysates for specialty food applications. Algal Research, 2021, 55, 102248.	4.6	12
3	A Scalable System for Generation of Mesenchymal Stem Cells Derived from Induced Pluripotent Cells Employing Bioreactors and Degradable Microcarriers. Stem Cells Translational Medicine, 2021, 10, 1650-1665.	3.3	19
4	Unprecedented enhancement of recombinant protein production in sugarcane culms using a combinatorial promoter stacking system. Scientific Reports, 2020, 10, 13713.	3.3	11
5	Data on using single- and mixed-mode resins for capture chromatography of recombinant human thioredoxin from Escherichia coli. Data in Brief, 2020, 33, 106500.	1.0	0
6	Processing of permeabilized Chlorella vulgaris biomass into lutein and protein-rich products. Journal of Applied Phycology, 2020, 32, 1697-1707.	2.8	13
7	Capture chromatography with mixed-mode resins: A case study with recombinant human thioredoxin from Escherichia coli. Journal of Chromatography A, 2020, 1625, 461327.	3.7	3
8	Exploring the separation power of mixedâ€modal resins for purification of recombinant osteopontin from clarified Escherichia coli lysates. Biotechnology Progress, 2019, 35, e2722.	2.6	2
9	Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 2018, 33, 470-485.	4.6	50
10	Extraction and fractionation of microalgae-based protein products. Algal Research, 2018, 36, 175-192.	4.6	164
11	Process for selective extraction of pigments and functional proteins from Chlorella vulgaris. Algal Research, 2018, 35, 185-193.	4.6	61
12	Separation Options for Phosphorylated Osteopontin from Transgenic Microalgae Chlamydomonas reinhardtii. International Journal of Molecular Sciences, 2018, 19, 585.	4.1	12
13	<i>Selective extraction of carotenoids and proteins from Chlorella vulgaris</i> . , 2017, , .		1
14	Impact of Dry-milled Germ Processing on Aqueous Protein and Oil Extraction. Food and Bioprocess Technology, 2016, 9, 612-620.	4.7	7
15	Evaluation of pretreatment methods for primary recovery and capture of an antibody fragment (αCD22scFv) from Chlamydomonas reinhardtii lysates. Algal Research, 2015, 12, 455-462.	4.6	3
16	Light-Induced Production of An Antibody Fragment and Malaria Vaccine Antigen from Chlamydomonas reinhardtii. Processes, 2014, 2, 625-638.	2.8	10
17	Purification and Characterization of Recombinant Cel7A from Maize Seed. Applied Biochemistry and Biotechnology, 2014, 174, 2864-2874.	2.9	9
18	Enhanced Expression Levels of Cellulase Enzymes Using Multiple Transcription Units. Bioenergy Research, 2013, 6, 699-710.	3.9	10

#	Article	IF	CITATIONS
19	Recovery of bovine lysozyme from transgenic sugarcane stalks: extraction, membrane filtration, and purification. Bioprocess and Biosystems Engineering, 2013, 36, 1407-1416.	3.4	15
20	Effect of algogenic organic matter (AOM) and sodium chloride on Nannochloropsis salina flocculation efficiency. Bioresource Technology, 2013, 143, 231-237.	9.6	62
21	Downstream Processing of Transgenic Plant Systems: Protein Recovery and Purification Strategies. , 2012, , 217-257.		8
22	Harvesting Nannochloris oculata by inorganic electrolyte flocculation: Effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresource Technology, 2012, 118, 418-424.	9.6	73
23	Recovery and purification of plant-made recombinant proteins. Biotechnology Advances, 2012, 30, 419-433.	11.7	167
24	Phenolics removal from transgenic <i>Lemna minor</i> extracts expressing mAb and impact on mAb production cost. Biotechnology Progress, 2011, 27, 410-418.	2.6	20
25	Process evaluations and economic analyses of recombinant human lysozyme and hen eggâ€white lysozyme purifications. Biotechnology Progress, 2011, 27, 733-743.	2.6	10
26	Bioseparation: Proteins. , 2010, , 196-200.		0
27	Evaluation of alternatives for human lysozyme purification from transgenic rice: Impact of phytic acid and buffer. Biotechnology Progress, 2010, 26, 1303-1311.	2.6	10
28	Removal of Phenolic Compounds by Adsorption on Polymeric Resins before Protein Purification. , 2010, , .		0
29	Commercial Opportunities and Challenges for Protein Products from Corn. , 2010, , .		0
30	Evaluation of monoclonal antibody and phenolic extraction from transgenic <i>Lemna</i> for purification process development. Biotechnology and Bioengineering, 2009, 104, 562-571.	3.3	57
31	Evaluation of Processing Options for Transgenic Sugarcane Tissue Expressing Bovine Lysozyme. , 2009, , .		0
32	Effect of Phytic Acid and Buffer Ions on Recombinant Human Lysozyme Purification. , 2009, , .		0
33	Effect of Rice Extract Impurities on Cation Exchange Adsorption of Lysozyme. , 2006, , .		0
34	Factors Influencing Recombinant Human Lysozyme Extraction and Cation Exchange Adsorption. Biotechnology Progress, 2006, 22, 745-752.	2.6	30
35	Production of human monoclonal antibody in eggs of chimeric chickens. Nature Biotechnology, 2005, 23, 1159-1169.	17.5	204
36	Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain. Transgenic Research, 2005, 14, 237-249.	2.4	103

#	Article	IF	CITATIONS
37	Purification of recombinant aprotinin produced in transgenic corn seed: separation from CTI utilizing ion-exchange chromatography. Brazilian Journal of Chemical Engineering, 2005, 22, 323-330.	1.3	10
38	Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant Biotechnology Journal, 2004, 3, 103-114.	8.3	72
39	Considerations for the recovery of recombinant proteins from plants. Biotechnology Progress, 2004, 20, 1001-1014.	2.6	152
40	Downstream processing of recombinant proteins from transgenic feedstock. Current Opinion in Biotechnology, 2004, 15, 479-486.	6.6	74
41	Production of Recombinant Proteins from Transgenic Crops. , 2002, , 159-174.		16
42	Recombinant aprotinin produced in transgenic corn seed: Extraction and purification studies. Biotechnology and Bioengineering, 2002, 80, 268-276.	3.3	75
43	Aqueous Extraction of β-Glucuronidase from Transgenic Canola: Kinetics and Microstructure. Biotechnology Progress, 2002, 18, 1301-1305.	2.6	13
44	Effect of Processing on the Recovery of Recombinant Î ² -Glucuronidase (rGUS) from Transgenic Canola. Biotechnology Progress, 2001, 17, 168-174.	2.6	19
45	Supercritical fluid extraction of black pepper (Piper nigrun L.) essential oil. Journal of Supercritical Fluids, 1999, 14, 235-245.	3.2	118
46	Molecular Farming of Industrial Proteins from Transgenic Maize. Advances in Experimental Medicine and Biology, 1999, 464, 127-147.	1.6	72
47	Title is missing!. Molecular Breeding, 1998, 4, 301-312.	2.1	124
48	Production and Purification of Two Recombinant Proteins from Transgenic Corn. Biotechnology Progress, 1998, 14, 149-155.	2.6	122
49	Process and Economic Evaluation of the Extraction and Purification of Recombinant β-Glucuronidase from Transgenic Corn. Biotechnology Progress, 1998, 14, 607-614.	2.6	124
50	Processing of transgenic corn seed and its effect on the recovery of recombinant β-glucuronidase. , 1998, 60, 44-52.		65
51	Effects of mutations in the starch-binding domain of Bacillus macerans cyclodextrin glycosyltransferase. Journal of Biotechnology, 1998, 65, 191-202.	3.8	26
52	Characterization and Application of Porcine Liver Aldehyde Oxidase in the Off-Flavor Reduction of Soy Proteins. Journal of Agricultural and Food Chemistry, 1997, 45, 2488-2494.	5.2	15
53	Title is missing!. Molecular Breeding, 1997, 3, 291-306.	2.1	307
54	Production of recombinant proteins in transgenic plants: Practical considerations. , 1997, 56, 473-484.		297

4

#	Article	IF	CITATIONS
55	Recovery and purification of lactic acid from fermentation broth by adsorption. Applied Biochemistry and Biotechnology, 1996, 57-58, 471-480.	2.9	40
56	Recovery and Purification of Lactic Acid from Fermentation Broth by Adsorption. , 1996, , 471-480.		6
57	Domain E ofBacillus maceranscyclodextrin glucanotransferase: An independent starch-binding domain. Biotechnology and Bioengineering, 1995, 47, 575-584.	3.3	33
58	Off-flavor removal from soy-protein isolate by using liquid and supercritical carbon dioxide. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 1107-1115.	1.9	32
59	Deletion analysis of the starch-binding domain of Aspergillus glucoamylase. Protein Engineering, Design and Selection, 1995, 8, 1049-1055.	2.1	27
60	Characterization of a β-galactosidase fusion protein containing the starch-binding domain of Aspergillus glucoamylase. Enzyme and Microbial Technology, 1994, 16, 18-23.	3.2	14
61	Recovery of lactic acid by sorption. Applied Biochemistry and Biotechnology, 1994, 45-46, 131-144.	2.9	39
62	A Glutathione S-Transferase Fusion Protein with the Starch-Binding Domain of Aspergillus Glucoamylase. Annals of the New York Academy of Sciences, 1994, 721, 160-167.	3.8	4
63	Functional starch-binding domain of Aspergillus glucoamylase I in. Escherichia coli. Gene, 1993, 127, 193-197.	2.2	13
64	Degradation of Degradable Starch-Polyethylene Plastics in a Compost Environment. Applied and Environmental Microbiology, 1993, 59, 1155-1161.	3.1	64
65	Accelerated degradation studies of starch-filled polyethylene films. Industrial & Engineering Chemistry Research, 1992, 31, 2332-2339.	3.7	33
66	Solubility of fatty acids in supercritical carbon dioxide. JAOCS, Journal of the American Oil Chemists' Society, 1992, 69, 1069-1076.	1.9	91
67	Effect of compounding and starch modification on properties of starch-filled low-density polyethylene. Industrial & Engineering Chemistry Research, 1991, 30, 1841-1846.	3.7	97
68	Characterization of glucoamylase adsorption to raw starch. Enzyme and Microbial Technology, 1991, 13, 982-990.	3.2	44
69	Improved adsorption to starch of a .betagalactosidase fusion protein containing the starch-binding domain from Aspergillus glucoamylase. Biotechnology Progress, 1991, 7, 225-229.	2.6	23
70	Activity and thermal stability of genetically truncated forms of Aspergillus glucoamylase. Gene, 1990, 91, 131-134.	2.2	53
71	Subsite mapping ofAspergillus niger glucoamylases I and II with malto- and isomaltooligosaccharides. Biotechnology and Bioengineering, 1989, 34, 681-688.	3.3	74
72	Kinetics, equilibria, and modeling of the formation of oligosaccharides fromD-glucose withAspergillus niger glucoamylases I and II. Biotechnology and Bioengineering, 1989, 34, 694-704.	3.3	64

#	Article	IF	CITATIONS
73	Retention of carbohydrates on silica and amine-bonded silica stationary phases: application of the hydration model. Journal of Chromatography A, 1985, 325, 287-293.	3.7	61
74	Isothermal capillary column gas chromatography of trimethylsilyl disaccharides. Journal of Chromatography A, 1983, 254, 157-162.	3.7	36