
## Alessandro D'Annibale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4311276/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF               | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 1  | Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme and Microbial Technology, 2002, 31, 907-931.                                  | 3.2              | 674                 |
| 2  | Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere, 2003, 50, 959-966. | 8.2              | 235                 |
| 3  | Role of Autochthonous Filamentous Fungi in Bioremediation of a Soil Historically Contaminated with<br>Aromatic Hydrocarbons. Applied and Environmental Microbiology, 2006, 72, 28-36.       | 3.1              | 153                 |
| 4  | Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. Journal of Biotechnology, 2000, 77, 265-273.                             | 3.8              | 149                 |
| 5  | Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment. Process Biochemistry, 1999, 34, 697-706.                                      | 3.7              | 146                 |
| 6  | Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresource<br>Technology, 2006, 97, 1828-1833.                                                              | 9.6              | 132                 |
| 7  | Submerged and solid-state production of laccase and Mn-peroxidase by on olive mill wastewater-based media. Journal of Biotechnology, 2003, 100, 77-85.                                      | 3.8              | 120                 |
| 8  | Bioremediation of long-term PCB-contaminated soil by white-rot fungi. Journal of Hazardous<br>Materials, 2017, 324, 701-710.                                                                | 12.4             | 118                 |
| 9  | An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Organic and Biomolecular Chemistry, 2008, 6, 868.                | 2.8              | 104                 |
| 10 | The biodegradation of recalcitrant effluents from an olive mill by a white-rot fungus. Journal of<br>Biotechnology, 1998, 61, 209-218.                                                      | 3.8              | 102                 |
| 11 | Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. Journal of Hazardous Materials, 2013, 248-249, 407-414.      | 12.4             | 97                  |
| 12 | Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater.<br>Research in Microbiology, 2004, 155, 596-603.                                             | 2.1              | 88                  |
| 13 | Lentinula edodes removes phenols from olive-mill wastewater: impact on durum wheat (Triticum) Tj ETQq1 1 0.78                                                                               | 4314 rgB⊺<br>8.2 | Г /Qverlock         |
| 14 | Preparation of Lignin Nanoparticles from Wood Waste for Wood Surface Treatment. Nanomaterials, 2019, 9, 281.                                                                                | 4.1              | 79                  |
| 15 | Degradation of aromatic hydrocarbons by whiteâ€rot fungi in a historically contaminated soil.<br>Biotechnology and Bioengineering, 2005, 90, 723-731.                                       | 3.3              | 77                  |
| 16 | Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate () Tj ETQq0 0 0<br>biodegradation. Science of the Total Environment, 2015, 508, 20-28.       | rgBT /Ove<br>8.0 | rlock 10 Tf 5<br>75 |
| 17 | Olive oil mill wastewater valorisation by fungi. Journal of Chemical Technology and Biotechnology, 2006, 81, 1547-1555.                                                                     | 3.2              | 74                  |
| 18 | Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. International<br>Biodeterioration and Biodegradation, 2007, 60, 165-170.                           | 3.9              | 65                  |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Assessment of olive-mill wastewater as a growth medium for lipase production by Candida cylindracea in bench-top reactor. Bioresource Technology, 2009, 100, 3395-3402.                                                           | 9.6  | 63        |
| 20 | Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on<br>microbial community composition in a real industrial PAH-polluted soil. Journal of Hazardous<br>Materials, 2015, 283, 35-43. | 12.4 | 62        |
| 21 | Production, purification and partial characterisation of a novel laccase from the white-rot fungus<br>Panus tigrinus CBS 577.79. Antonie Van Leeuwenhoek, 2006, 91, 57-69.                                                        | 1.7  | 60        |
| 22 | Degradation of tetracyclines and sulfonamides by stevensite―and biochar―mmobilized laccase systems<br>and impact on residual antibiotic activity. Journal of Chemical Technology and Biotechnology, 2018,<br>93, 3394-3409.       | 3.2  | 60        |
| 23 | A sustainable use of Ricotta Cheese Whey for microbial biodiesel production. Science of the Total<br>Environment, 2017, 584-585, 554-560.                                                                                         | 8.0  | 59        |
| 24 | In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS<br>577.79. Bioresource Technology, 2010, 101, 3004-3012.                                                                       | 9.6  | 56        |
| 25 | Correlated effects during the bioconversion of waste olive waters by Lentinus edodes. Bioresource Technology, 1995, 51, 221-226.                                                                                                  | 9.6  | 54        |
| 26 | In search for practical advantages from the immobilisation of an enzyme: the case of laccase. Journal of Molecular Catalysis B: Enzymatic, 2006, 41, 61-69.                                                                       | 1.8  | 54        |
| 27 | Enzyme and fungal treatments and a combination thereof reduce olive mill wastewater phytotoxicity<br>on Zea mays L. seeds. Chemosphere, 2007, 66, 1627-1633.                                                                      | 8.2  | 54        |
| 28 | Short-term impact of dry olive mill residue addition to soil on the resident microbiota. Bioresource Technology, 2009, 100, 6098-6106.                                                                                            | 9.6  | 54        |
| 29 | Organic matter evolution and partial detoxification in two-phase olive mill waste colonized by white-rot fungi. International Biodeterioration and Biodegradation, 2007, 60, 116-125.                                             | 3.9  | 52        |
| 30 | An efficient PAH-degrading Lentinus (Panus) tigrinus strain: Effect of inoculum formulation and pollutant bioavailability in solid matrices. Journal of Hazardous Materials, 2010, 183, 669-676.                                  | 12.4 | 47        |
| 31 | Effect of agitation and aeration on the reduction of pollutant load of olive mill wastewater by the white-rot fungus Panus tigrinus. Biochemical Engineering Journal, 2006, 29, 243-249.                                          | 3.6  | 46        |
| 32 | Bioconversion of agro-industrial waste into microbial oils by filamentous fungi. Chemical<br>Engineering Research and Design, 2018, 117, 143-151.                                                                                 | 5.6  | 45        |
| 33 | Orange peel pretreatment in a novel lab-scale direct steam-injection apparatus for ethanol production. Biomass and Bioenergy, 2014, 61, 146-156.                                                                                  | 5.7  | 44        |
| 34 | Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil. Science of the Total Environment, 2015, 505, 545-554.                                    | 8.0  | 44        |
| 35 | The production of exo-enzymes by Lentinus edodes and pleurotus ostreatus and their use for upgrading corn straw. Bioresource Technology, 1994, 48, 173-178.                                                                       | 9.6  | 43        |
| 36 | Mobilizing agents enhance fungal degradation of polycyclic aromatic hydrocarbons and affect diversity of indigenous bacteria in soil. Biotechnology and Bioengineering, 2008, 101, 273-285.                                       | 3.3  | 39        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Organic matter transformation and detoxification in dry olive mill residue by the saprophytic fungus<br>Paecilomyces farinosus. Process Biochemistry, 2009, 44, 216-225.                            | 3.7 | 37        |
| 38 | Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice. Ecotoxicology and Environmental Safety, 2019, 185, 109701.                 | 6.0 | 37        |
| 39 | Solid-state cultures of Fusarium oxysporum transform aromatic components of olive-mill dry residue and reduce its phytotoxicity. Bioresource Technology, 2007, 98, 3547-3554.                       | 9.6 | 36        |
| 40 | Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant. Chemosphere, 2010, 79, 855-864.          | 8.2 | 36        |
| 41 | Bioaugmentation of a historically contaminated soil by polychlorinated biphenyls with Lentinus tigrinus. Microbial Cell Factories, 2012, 11, 35.                                                    | 4.0 | 36        |
| 42 | Veratryl alcohol oxidation by manganese-dependent peroxidase from Lentinus edodes. Journal of<br>Biotechnology, 1996, 48, 231-239.                                                                  | 3.8 | 35        |
| 43 | Chitosan Production by Fungi: Current State of Knowledge, Future Opportunities and Constraints.<br>Fermentation, 2022, 8, 76.                                                                       | 3.0 | 35        |
| 44 | Substrate specificity of laccase fromLentinus edodes. Acta Biotechnologica, 1996, 16, 257-270.                                                                                                      | 0.9 | 33        |
| 45 | Bioconversion of olive-mill dry residue by Fusarium lateritium and subsequent impact on its phytotoxicity. Chemosphere, 2005, 60, 1393-1400.                                                        | 8.2 | 32        |
| 46 | Antioxidants and Photosynthesis in the Leaves of Triticum durum L. Seedlings Acclimated to Low,<br>Non-Chilling Temperature. Journal of Plant Physiology, 1993, 142, 18-24.                         | 3.5 | 30        |
| 47 | Response surface methodology study of laccase production in Panus tigrinus liquid cultures.<br>Biochemical Engineering Journal, 2008, 39, 236-245.                                                  | 3.6 | 29        |
| 48 | Stoned olive pomace fermentation with Pleurotus species and its evaluation as a possible animal feed.<br>Enzyme and Microbial Technology, 2010, 46, 223-228.                                        | 3.2 | 29        |
| 49 | Antioxidants and photosynthesis in the leaves of Triticum durum desf. Seedlings acclimated to non-stressing high temperature. Journal of Plant Physiology, 1997, 150, 381-387.                      | 3.5 | 28        |
| 50 | Leaching and microbial treatment of a soil contaminated by sulphide ore ashes and aromatic hydrocarbons. Applied Microbiology and Biotechnology, 2007, 74, 1135-1144.                               | 3.6 | 28        |
| 51 | Isolation and characterization of lignin from beech wood and chestnut sawdust for the preparation of lignin nanoparticles (LNPs) from wood industry side-streams. Holzforschung, 2018, 72, 961-972. | 1.9 | 28        |
| 52 | Orange peel waste–based liquid medium for biodiesel production by oleaginous yeasts. Applied<br>Microbiology and Biotechnology, 2020, 104, 4617-4628.                                               | 3.6 | 27        |
| 53 | Addition of allochthonous fungi to a historically contaminated soil affects both remediation efficiency and bacterial diversity. Applied Microbiology and Biotechnology, 2007, 77, 203-211.         | 3.6 | 25        |
| 54 | Aqueous plant extracts as stimulators of laccase production in liquid cultures of Lentinus edodes.<br>Biotechnology Letters, 1996, 10, 243.                                                         | 0.5 | 24        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Addition of maize stalks and soybean oil to a historically PCB-contaminated soil: effect on degradation performance and indigenous microbiota. New Biotechnology, 2012, 30, 69-79.                                       | 4.4  | 24        |
| 56 | Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil. Science of the Total Environment, 2016, 566-567, 250-259.                                            | 8.0  | 24        |
| 57 | Influence of the age and growth conditions on the mycelial chitin content ofLentinus edodes.<br>Journal of Basic Microbiology, 1994, 34, 11-16.                                                                          | 3.3  | 21        |
| 58 | The reactivity of phenolic and non-phenolic residual kraft lignin model compounds with<br>Mn(II)-peroxidase from Lentinula edodes. Bioorganic and Medicinal Chemistry, 2000, 8, 433-438.                                 | 3.0  | 21        |
| 59 | Kinetic and redox properties of MnP II, a major manganese peroxidase isoenzyme from Panus tigrinus<br>CBS 577.79. Journal of Biological Inorganic Chemistry, 2009, 14, 1153-1163.                                        | 2.6  | 21        |
| 60 | Ethanol production from xerophilic and salt-resistant Tamarix jordanis biomass. Biomass and<br>Bioenergy, 2014, 61, 73-81.                                                                                               | 5.7  | 21        |
| 61 | Immobilized Inocula of White-Rot Fungi Accelerate both Detoxification and Organic Matter<br>Transformation in Two-Phase Dry Olive-Mill Residue. Journal of Agricultural and Food Chemistry,<br>2009, 57, 5452-5460.      | 5.2  | 20        |
| 62 | Lentinus (Panus) tigrinus augmentation of a historically contaminated soil: Matrix decontamination and structure and function of the resident bacterial community. Journal of Hazardous Materials, 2011, 186, 1263-1270. | 12.4 | 20        |
| 63 | Impact of the Fenton-like treatment on the microbial community of a diesel-contaminated soil.<br>Chemosphere, 2018, 191, 580-588.                                                                                        | 8.2  | 20        |
| 64 | Phenoloxidase-producing halotolerant fungi from olive brine wastewater. Process Biochemistry, 2012, 47, 1433-1437.                                                                                                       | 3.7  | 18        |
| 65 | Fungal Community Structure and As-Resistant Fungi in a Decommissioned Gold Mine Site. Frontiers in Microbiology, 2017, 8, 2202.                                                                                          | 3.5  | 18        |
| 66 | Optimisation by response surface methodology of fungal lipase production on olive mill wastewater.<br>Journal of Chemical Technology and Biotechnology, 2006, 81, 1586-1593.                                             | 3.2  | 17        |
| 67 | Multiple forms of synthetic pronase-phenolic copolymers. Soil Biology and Biochemistry, 1990, 22, 721-724.                                                                                                               | 8.8  | 16        |
| 68 | Biotransformation of tyrosol by whole-cell and cell-free preparation of Lentinus edodes. Journal of<br>Molecular Catalysis B: Enzymatic, 1997, 3, 213-220.                                                               | 1.8  | 15        |
| 69 | High Solid Loading in Dilute Acid Hydrolysis of Orange Peel Waste Improves Ethanol Production.<br>Bioenergy Research, 2015, 8, 1292-1302.                                                                                | 3.9  | 15        |
| 70 | Cynara cardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates. Biomass and Bioenergy, 2019, 127, 105276.                                                  | 5.7  | 15        |
| 71 | Development of laboratory-scale sequential electrokinetic and biological treatment of chronically hydrocarbon-impacted soils. New Biotechnology, 2020, 58, 38-44.                                                        | 4.4  | 15        |
| 72 | Integrated approach of metal removal and bioprecipitation followed by fungal degradation of organic pollutants from contaminated soils. European Journal of Soil Biology, 2007, 43, 380-387.                             | 3.2  | 14        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: In vivo and in vitro mechanistic<br>study-evidence for P-450 involvement in the transformation. Journal of Hazardous Materials, 2013,<br>260, 975-983. | 12.4 | 14        |
| 74 | Dairy wastewater polluting load and treatment performances of an industrial three-cascade-reactor plant. Process Biochemistry, 2013, 48, 941-944.                                                                   | 3.7  | 12        |
| 75 | <i>Pleurotus ostreatus</i> biofilm-forming ability and ultrastructure are significantly influenced by growth medium and support type. Journal of Applied Microbiology, 2013, 114, 1750-1762.                        | 3.1  | 12        |
| 76 | Effect of mobilizing agents on mycoremediation and impact on the indigenous microbiota. Journal of Chemical Technology and Biotechnology, 2009, 84, 836-844.                                                        | 3.2  | 11        |
| 77 | Rapid assessment of As and other elements in naturally-contaminated calcareous soil through hyperspectral VIS-NIR analysis. Talanta, 2018, 190, 167-173.                                                            | 5.5  | 11        |
| 78 | Characterization of Pleurotus ostreatus Biofilms by Using the Calgary Biofilm Device. Applied and Environmental Microbiology, 2013, 79, 6083-6092.                                                                  | 3.1  | 10        |
| 79 | Mn-peroxidase production byPanus tigrinus CBS 577.79: response surface optimisation and bioreactor comparison. Journal of Chemical Technology and Biotechnology, 2006, 81, 832-840.                                 | 3.2  | 9         |
| 80 | Non-supplemented aqueous extract from dry olive mill residue: A possible medium for fungal manganese peroxidase production. Biochemical Engineering Journal, 2012, 65, 96-99.                                       | 3.6  | 8         |
| 81 | Mixed glycerol and orange peel-based substrate for fed-batch microbial biodiesel production. Heliyon, 2020, 6, e04801.                                                                                              | 3.2  | 8         |
| 82 | Pleurotus ostreatusbiofilms exhibit higher tolerance to toxicants than free-floating counterparts.<br>Biofouling, 2013, 29, 1043-1055.                                                                              | 2.2  | 7         |
| 83 | Production of lignin-modifying enzymes by Trametes ochracea on high-molecular weight fraction of olive mill wastewater, a byproduct of olive oil biorefinery. New Biotechnology, 2019, 50, 44-51.                   | 4.4  | 7         |
| 84 | Time-Dependent Changes in Morphostructural Properties and Relative Abundances of Contributors in<br>Pleurotus ostreatus/Pseudomonas alcaliphila Mixed Biofilms. Frontiers in Microbiology, 2019, 10, 1819.          | 3.5  | 6         |
| 85 | Development and testing of a novel lab-scale direct steam-injection apparatus to hydrolyse model and saline crop slurries. Journal of Biotechnology, 2012, 157, 590-597.                                            | 3.8  | 5         |
| 86 | Aspergillus olivimuriae sp. nov., a halotolerant species isolated from olive brine. International<br>Journal of Systematic and Evolutionary Microbiology, 2019, 69, 2899-2906.                                      | 1.7  | 5         |
| 87 | Screening, isolation, and characterization of glycosyl-hydrolase-producing fungi from desert halophyte plants. International Microbiology, 2014, 17, 41-8.                                                          | 2.4  | 5         |
| 88 | Effect of additives on enzyme-catalyzed polymerization of phenols and aromatic amines. Frontiers in<br>Bioscience - Scholar, 2012, S4, 1249-1265.                                                                   | 2.1  | 4         |
| 89 | Effect of Mobilising Agents on Mycoremediation of Soils Contaminated by Hydrophobic Persistent Pollutants. Soil Biology, 2013, , 393-417.                                                                           | 0.8  | 3         |
| 90 | Lignocellulolytic Potential of the Recently Described Species Aspergillus olivimuriae on Different<br>Solid Wastes. Applied Sciences (Switzerland), 2021, 11, 5349.                                                 | 2.5  | 2         |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | AQUEOUS EXTRACT FROM DRY OLIVE MILL RESIDUE AS A POSSIBLE BASAL MEDIUM FOR LACCASE PRODUCTION. Environmental Engineering and Management Journal, 2014, 13, 3037-3044. | 0.6 | 2         |
| 92 | Upgrading and detoxification of aqueous extracts from dry olive mill residues by white-rot fungi.<br>Journal of Biotechnology, 2010, 150, 225-225.                    | 3.8 | 0         |
| 93 | Metagenomics unveils bacterial and fungal communities response to mycoremediation of polychlorinated biphenyl-contaminated soil. New Biotechnology, 2014, 31, S69.    | 4.4 | 0         |
| 94 | Aqueous extract from orange peel waste as a valuable growth substrate for microbial oil production. New Biotechnology, 2016, 33, S143-S144.                           | 4.4 | 0         |