
Masahito Ueyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4311182/publications.pdf Version: 2024-02-01

MASAHITO LIEVAMA

#	Article	IF	CITATIONS
1	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	4.2	122
2	Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nature Climate Change, 2020, 10, 555-560.	8.1	106
3	New dataâ€driven estimation of terrestrial CO ₂ fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 767-795.	1.3	90
4	Statistical upscaling of ecosystem CO ₂ fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology, 2021, 27, 4040-4059.	4.2	83
5	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	3.7	79
6	Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 19048.	0.8	77
7	Autumn warming reduces the <scp><scp>CO₂</scp> sink of a black spruce forest in interior Alaska based on a nineâ€year eddy covariance measurement. Global Change Biology, 2014, 20, 1161-1173.</scp>	4.2	76
8	Cross-biome synthesis of source versus sink limits to tree growth. Science, 2022, 376, 758-761.	6.0	76
9	Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ecological Applications, 2013, 23, 1798-1816.	1.8	74
10	Assessment of winter fluxes of CO2and CH4in boreal forest soils of central Alaska estimated by the profile method and the chamber method: a diagnosis of methane emission and implications for the regional carbon budget. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 223-233.	0.8	67
11	Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1266-1281.	1.3	60
12	Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest. Agricultural and Forest Meteorology, 2014, 197, 26-39.	1.9	54
13	Understory CO2, sensible heat, and latent heat fluxes in a black spruce forest in interior Alaska. Agricultural and Forest Meteorology, 2015, 214-215, 80-90.	1.9	53
14	Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data. Biogeosciences, 2010, 7, 959-977.	1.3	50
15	Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data. Remote Sensing of Environment, 2016, 177, 160-170.	4.6	48
16	Response of the carbon cycle in sub-arctic black spruce forests to climate change: Reduction of a carbon sink related to the sensitivity of heterotrophic respiration. Agricultural and Forest Meteorology, 2009, 149, 582-602.	1.9	43
17	Increased highâ€latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Global Change Biology, 2020, 26, 682-696.	4.2	41
18	Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations. Biogeosciences, 2010, 7, 2061-2080.	1.3	40

Masahito Ueyama

#	Article	IF	CITATIONS
19	Inferring CO ₂ fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model. Environmental Research Letters, 2020, 15, 084009.	2.2	38
20	The role of permafrost in water exchange of a black spruce forest in Interior Alaska. Agricultural and Forest Meteorology, 2012, 161, 107-115.	1.9	36
21	Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature Communications, 2021, 12, 2266.	5.8	34
22	Controlling factors on the interannual CO2 budget at a subarctic black spruce forest in interior Alaska. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 491-501.	0.8	33
23	Site-level model–data synthesis of terrestrial carbon fluxes in the CarboEastAsia eddy-covariance observation network: toward future modeling efforts. Journal of Forest Research, 2013, 18, 13-20.	0.7	31
24	The biophysical climate mitigation potential of boreal peatlands during the growing season. Environmental Research Letters, 2020, 15, 104004.	2.2	31
25	Diurnal, weekly, seasonal, and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan. Atmospheric Chemistry and Physics, 2016, 16, 14727-14740.	1.9	29
26	Recent Changes in Terrestrial Gross Primary Productivity in Asia from 1982 to 2011. Remote Sensing, 2013, 5, 6043-6062.	1.8	28
27	Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method. Atmospheric Environment, 2014, 83, 53-61.	1.9	28
28	Methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique. Agricultural and Forest Meteorology, 2015, 214-215, 157-168.	1.9	28
29	Carbon dioxide balance in early-successional forests after forest fires in interior Alaska. Agricultural and Forest Meteorology, 2019, 275, 196-207.	1.9	28
30	Dataset of CarboEastAsia and uncertainties in the CO2 budget evaluation caused by different data processing. Journal of Forest Research, 2013, 18, 41-48.	0.7	26
31	Delayed responses of an Arctic ecosystem to an extreme summer: impacts on net ecosystem exchange and vegetation functioning. Biogeosciences, 2014, 11, 5877-5888.	1.3	24
32	Determination of the gas exchange phenology in an evergreen coniferous forest from 7 years of eddy covariance flux data using an extended bigâ€leaf analysis. Ecological Research, 2013, 28, 373-385.	0.7	23
33	Surface energy exchange in a dense urban built-up area based on two-year eddy covariance measurements in Sakai, Japan. Urban Climate, 2017, 19, 155-169.	2.4	23
34	The sensitivity of carbon sequestration to harvesting and climate conditions in a temperate cypress forest: Observations and modeling. Ecological Modelling, 2011, 222, 3216-3225.	1.2	22
35	Measurement of methane flux over an evergreen coniferous forest canopy using a relaxed eddy accumulation system with tuneable diode laser spectroscopy detection. Theoretical and Applied Climatology, 2012, 109, 39-49.	1.3	22
36	Quick Recovery of Carbon Dioxide Exchanges in a Burned Black Spruce Forest in Interior Alaska. Scientific Online Letters on the Atmosphere, 2011, 7, 105-108.	0.6	22

Masahito Ueyama

#	Article	IF	CITATIONS
37	The ABCflux database: Arctic–boreal CO ₂ flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data, 2022, 14, 179-208.	3.7	22
38	An inter-comparison between Gill and Campbell sonic anemometers. Agricultural and Forest Meteorology, 2014, 195-196, 123-131.	1.9	21
39	Influence of Source/Sink Distributions on Flux–Gradient Relationships in the Roughness Sublayer Over an Open Forest Canopy Under Unstable Conditions. Boundary-Layer Meteorology, 2010, 136, 391-405.	1.2	20
40	Variations in fraction of absorbed photosynthetically active radiation and comparisons with MODIS data in burned black spruce forests of interior Alaska. Polar Science, 2013, 7, 113-124.	0.5	20
41	Methane uptake in a temperate forest soil using continuous closed-chamber measurements. Agricultural and Forest Meteorology, 2015, 213, 1-9.	1.9	20
42	Change in surface energy balance in Alaska due to fire and spring warming, based on upscaling eddy covariance measurements. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1947-1969.	1.3	18
43	Optimization of a biochemical model with eddy covariance measurements in black spruce forests of Alaska for estimating CO2 fertilization effects. Agricultural and Forest Meteorology, 2016, 222, 98-111.	1.9	18
44	Environmental controls on methane fluxes in a cool temperate bog. Agricultural and Forest Meteorology, 2020, 281, 107852.	1.9	18
45	Continuous measurement of methane flux over a larch forest using a relaxed eddy accumulation method. Theoretical and Applied Climatology, 2012, 109, 461-472.	1.3	15
46	A cool-temperate young larch plantation as a net methane source - A 4-year continuous hyperbolic relaxed eddy accumulation and chamber measurements. Atmospheric Environment, 2018, 184, 110-120.	1.9	15
47	Does summer warming reduce black spruce productivity in interior Alaska?. Journal of Forest Research, 2015, 20, 52-59.	0.7	13
48	Reconciliation of top-down and bottom-up CO ₂ fluxes in Siberian larch forest. Environmental Research Letters, 2017, 12, 125012.	2.2	13
49	Applications of MODIS-visible bands index, greenery ratio to estimate CO2 budget of a rice paddy in Japan. J Agricultural Meteorology, 2009, 65, 365-374.	0.8	13
50	Satellite-Based Modeling of the Carbon Fluxes in Mature Black Spruce Forests in Alaska: A Synthesis of the Eddy Covariance Data and Satellite Remote Sensing Data. Earth Interactions, 2010, 14, 1-27.	0.7	11
51	Effects of water vapor dilution on trace gas flux, and practical correction methods. J Agricultural Meteorology, 2015, 71, 65-76.	0.8	11
52	Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model. Biogeosciences, 2020, 17, 5861-5882.	1.3	11
53	The role of carbon flux and biometric observations in constraining a terrestrial ecosystem model: a case study in disturbed forests in East Asia. Ecological Research, 2013, 28, 893-905.	0.7	10
54	Spatial and seasonal variations of CO ₂ flux and photosynthetic and respiratory parameters of larch forests in East Asia. Soil Science and Plant Nutrition, 2015, 61, 61-75.	0.8	10

MASAHITO UEYAMA

#	Article	IF	CITATIONS
55	Inferring methane fluxes at a larch forest using Lagrangian, Eulerian, and hybrid inverse models. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2018-2031.	1.3	9
56	A technique for high-accuracy flux measurement using a relaxed eddy accumulation system with an appropriate averaging strategy. J Agricultural Meteorology, 2009, 65, 315-325.	0.8	8
57	High-precision measurements of the methane flux over a larch forest based on a hyperbolic relaxed eddy accumulation method using a laser spectrometer. Agricultural and Forest Meteorology, 2013, 178-179, 183-193.	1.9	8
58	Impact of anomalous climates on carbon allocation to biomass production of leaves, woody components, and fine roots in a cool-temperate deciduous forest. Agricultural and Forest Meteorology, 2015, 201, 38-50.	1.9	8
59	Feature of Wind Profile in and above a Forest Canopy in a Complex Terrain. J Agricultural Meteorology, 2004, 60, 25-32.	0.8	8
60	Applications of NOAA/AVHRR and Observed Fluxes to Estimate 3 Regional Carbon Fluxes over Black Spruce Forests in Alaska. J Agricultural Meteorology, 2007, 63, 171-183.	0.8	7
61	Cooling and Moistening of the Planetary Boundary Layer in Interior Alaska Due to a Postfire Change in Surface Energy Exchange. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032968.	1.2	6
62	Cooling effect of an urban park by enhanced heat transport efficiency. J Agricultural Meteorology, 2020, 76, 148-153.	0.8	6
63	Is the empirical coefficient b for the relaxed eddy accumulation method constant?. Journal of Atmospheric Chemistry, 2014, 71, 79-94.	1.4	5
64	Leaf- and ecosystem-scale photosynthetic parameters for the overstory and understory of boreal forests in interior Alaska. J Agricultural Meteorology, 2018, 74, 79-86.	0.8	4
65	Partitioning methane flux by the eddy covariance method in a cool temperate bog based on a Bayesian framework. Agricultural and Forest Meteorology, 2022, 316, 108852.	1.9	4
66	Observation of vertical profiles of NO, O ₃ , and VOCs to estimate their sources and sinks by inverse modeling in a Japanese larch forest. J Agricultural Meteorology, 2020, 76, 1-10.	0.8	3
67	The Mechanism of Sensible Heat Transfer in and above a Forest. J Agricultural Meteorology, 2004, 60, 133-140.	0.8	3
68	Satellite Observations of Decadal Scale CO2 Fluxes Over Black Spruce Forests in Alaska Associated with Climate Variability. J Agricultural Meteorology, 2009, 65, 47-60.	0.8	3
69	Constraining models for methane oxidation based on long-term continuous chamber measurements in a temperate forest soil. Agricultural and Forest Meteorology, 2021, 310, 108654.	1.9	2
70	Vertical Distribution of CO2 Flux within and above a Larch Forest-Experimental and Numerical Approach J Agricultural Meteorology, 2006, 62, 9-14.	0.8	1
71	A decade of CO2 flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan. Environmental Pollution, 2022, 304, 119210.	3.7	0