Joe George Shapter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4311074/publications.pdf

Version: 2024-02-01

308 papers

11,883 citations

54 h-index 93 g-index

321 all docs

321 docs citations

times ranked

321

15959 citing authors

#	Article	IF	CITATIONS
1	Protein Electrochemistry Using Aligned Carbon Nanotube Arrays. Journal of the American Chemical Society, 2003, 125, 9006-9007.	13.7	853
2	Recent Development of Carbon Nanotube Transparent Conductive Films. Chemical Reviews, 2016, 116, 13413-13453.	47.7	391
3	Phosphorene and Phosphoreneâ€Based Materials – Prospects for Future Applications. Advanced Materials, 2016, 28, 8586-8617.	21.0	378
4	Accurate thickness measurement of graphene. Nanotechnology, 2016, 27, 125704.	2.6	325
5	Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. Journal of Materials Chemistry A, 2017, 5, 19521-19540.	10.3	323
6	Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 2021, 57, 451-468.	12.9	245
7	Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process. Carbon, 2006, 44, 1137-1141.	10.3	239
8	New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy and Environmental Science, 2019, 12, 1143-1176.	30.8	187
9	Alginate–graphene oxide hybrid gel beads: An efficient copper adsorbent material. Journal of Colloid and Interface Science, 2013, 397, 32-38.	9.4	185
10	Copper removal using bio-inspired polydopamine coated natural zeolites. Journal of Hazardous Materials, 2014, 273, 174-182.	12.4	160
11	Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. Journal of Hazardous Materials, 2013, 261, 534-541.	12.4	158
12	Carbon Nanotube‧ilicon Solar Cells. Advanced Energy Materials, 2012, 2, 1043-1055.	19.5	144
13	Ti3C2 MXenes-derived NaTi2(PO4)3/MXene nanohybrid for fast and efficient hybrid capacitive deionization performance. Chemical Engineering Journal, 2021, 407, 127148.	12.7	140
14	Highly efficient photocatalytic degradation of different hazardous contaminants by Caln2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study. Chemical Engineering Journal, 2021, 421, 127838.	12.7	138
15	Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. Journal of Hazardous Materials, 2013, 260, 330-338.	12.4	125
16	Carbon Nanotubes for Dye-Sensitized Solar Cells. Small, 2015, 11, 2963-2989.	10.0	122
17	Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nature Communications, 2017, 8, 14217.	12.8	122
18	Sustainable Polysulfides for Oil Spill Remediation: Repurposing Industrial Waste for Environmental Benefit. Advanced Sustainable Systems, 2018, 2, 1800024.	5.3	120

#	Article	IF	CITATIONS
19	Black Phosphorus: Synthesis and Application for Solar Cells. Advanced Energy Materials, 2018, 8, 1701832.	19.5	118
20	The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes. Electrochemistry Communications, 2007, 9, 1677-1683.	4.7	109
21	Nanocarbons for mesoscopic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 9020-9031.	10.3	104
22	Nitrogenâ€Doped CN <i>_×</i> /CNTs Heteroelectrocatalysts for Highly Efficient Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1602276.	19.5	102
23	Advances in carbon nanotube n-type doping: Methods, analysis and applications. Carbon, 2018, 126, 257-270.	10.3	102
24	Structural and chemical modification of porous alumina membranes. Microporous and Mesoporous Materials, 2009, 126, 87-94.	4.4	96
25	Ruthenium Porphyrin Functionalized Single-Walled Carbon Nanotube Arrays—A Step Toward Light Harvesting Antenna and Multibit Information Storage. Journal of the American Chemical Society, 2008, 130, 8788-8796.	13.7	93
26	Dual Silane Surface Functionalization for the Selective Attachment of Human Neuronal Cells to Porous Silicon. Langmuir, 2011, 27, 9497-9503.	3.5	92
27	Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis. Journal of Materials Chemistry A, 2020, 8, 15875-15883.	10.3	88
28	Carbon Nanotubes in TiO ₂ Nanofiber Photoelectrodes for Highâ€Performance Perovskite Solar Cells. Advanced Science, 2017, 4, 1600504.	11.2	83
29	Highly Dispersed Ru Nanoparticles on Boronâ€Doped Ti ₃ C ₂ T <i>_x</i> (MXene) Nanosheets for Synergistic Enhancement of Electrocatalytic Hydrogen Evolution. Small, 2021, 17, e2102218.	10.0	83
30	Heterointerface optimization in a covalent organic framework-on-MXene for high-performance capacitive deionization of oxygenated saline water. Materials Horizons, 2022, 9, 1708-1716.	12.2	82
31	The origin of the color of pearls in iridescence from nano-composite structures of the nacre. American Mineralogist, 2004, 89, 1353-1358.	1.9	81
32	Use of Carbon Nanotubes (CNTs) with Polymers in Solar Cells. Molecules, 2014, 19, 17329-17344.	3.8	80
33	Supergene gold transformation: Biogenic secondary and nano-particulate gold from arid Australia. Chemical Geology, 2012, 320-321, 17-31.	3.3	79
34	Emerging 2D Layered Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902253.	19.5	79
35	Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly. Physical Chemistry Chemical Physics, 2007, 9, 510-520.	2.8	78
36	Solution processed graphene structures for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 2605-2616.	10.3	73

#	Article	IF	Citations
37	Nanoporous anodic aluminium oxide membranes with layered surface chemistry. Chemical Communications, 2009, , 3062.	4.1	72
38	Biomineralization of Gold in Biofilms of <i>Cupriavidus metallidurans</i> . Environmental Science & Environmental & Env	10.0	70
39	Ti ₃ C ₂ T <i>_x</i> (MXene)â€6ilicon Heterojunction for Efficient Photovoltaic Cells. Advanced Energy Materials, 2019, 9, 1901063.	19.5	68
40	Observation of the oxidation of galena using Raman spectroscopy. International Journal of Mineral Processing, 2000, 60, 199-211.	2.6	67
41	Recent Advances in Applications of Sorted Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1902273.	14.9	67
42	Gold nanotube membranes functionalised with fluorinated thiols for selective molecular transport. Journal of Membrane Science, 2009, 328, 121-126.	8.2	64
43	Membrane–drug interactions studied using model membrane systems. Saudi Journal of Biological Sciences, 2015, 22, 714-718.	3.8	64
44	Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage. Microporous and Mesoporous Materials, 2021, 312, 110757.	4.4	63
45	Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells. Small Methods, 2021, 5, e2000744.	8.6	63
46	Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale, 2018, 10, 22087-22139.	5.6	62
47	Scanning Tunneling Microscopy Studies of Glucose Oxidase on Gold Surfaces. Langmuir, 2002, 18, 5422-5428.	3.5	61
48	Supramolecular construction of vesicles based on core-substituted naphthalene diimide appended with triethyleneglycol motifs. Chemical Communications, 2011, 47, 8226.	4.1	60
49	Printed recyclable and self-poled polymer piezoelectric generators through single-walled carbon nanotube templating. Energy and Environmental Science, 2020, 13, 868-883.	30.8	60
50	Efficient and Fast Synthesis of Fewâ€Layer Black Phosphorus via Microwaveâ€Assisted Liquidâ€Phase Exfoliation. Small Methods, 2017, 1, 1700260.	8.6	59
51	The effect of bulk iron concentration and heterogeneities on the copper activation of sphalerite. Minerals Engineering, 2008, 21, 1005-1012.	4.3	58
52	Efficient Production of Phosphorene Nanosheets via Shear Stress Mediated Exfoliation for Lowâ€Temperature Perovskite Solar Cells. Small Methods, 2019, 3, 1800521.	8.6	58
53	Gold nanotube membranes have catalytic properties. Microporous and Mesoporous Materials, 2012, 153, 131-136.	4.4	57
54	Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 4735-4739.	10.3	57

#	Article	IF	Citations
55	Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nature Communications, 2021, 12, 3171.	12.8	57
56	Supramolecular Mn(II) and Mn(II)/Mn(III) Grid Complexes with [Mn9($\hat{l}\frac{1}{4}$ 2-0)12] Core Structures. Structural, Magnetic, and Redox Properties and Surface Studies. Inorganic Chemistry, 2004, 43, 3812-3824.	4.0	56
57	Electron-transfer characteristics of ferrocene attached to single-walled carbon nanotubes (SWCNT) arrays directly anchored to silicon(100). Electrochimica Acta, 2007, 52, 6206-6211.	5.2	56
58	Recent progress in magnetic nanoparticles: synthesis, properties, and applications. Nanotechnology, 2018, 29, 452001.	2.6	56
59	Microwave-assisted synthesis of black phosphorus quantum dots: efficient electrocatalyst for oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12974-12978.	10.3	56
60	Fabrication of gold nanorod arrays by templating from porous alumina. Nanotechnology, 2005, 16, 2275-2281.	2.6	55
61	Efficient Prediction of Structural and Electronic Properties of Hybrid 2D Materials Using Complementary DFT and Machine Learning Approaches. Advanced Theory and Simulations, 2019, 2, 1800128.	2.8	55
62	The potential sunlight harvesting efficiency of carbon nanotube solar cells. Energy and Environmental Science, 2013, 6, 2572.	30.8	53
63	Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy, 2020, 70, 104480.	16.0	52
64	Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization. Nanoscale, 2010, 2, 1756.	5.6	51
65	The Burning Rate of Energetic Films of Nanostructured Porous Silicon. Small, 2011, 7, 3392-3398.	10.0	50
66	Preparation and characterisation of an aligned carbon nanotube array on the silicon (100) surface. Soft Matter, 2006, 2, 1081-1088.	2.7	49
67	The Role of Nanotubes in Carbon Nanotube–Silicon Solar Cells. Advanced Energy Materials, 2013, 3, 1091-1097.	19.5	49
68	Single-Walled Carbon Nanotubes Enhance the Efficiency and Stability of Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 19945-19954.	8.0	49
69	Fabrication of Tissue-Engineered Bionic Urethra Using Cell Sheet Technology and Labeling By Ultrasmall Superparamagnetic Iron Oxide for Full-Thickness Urethral Reconstruction. Theranostics, 2017, 7, 2509-2523.	10.0	49
70	A Portable and Efficient Solarâ€Rechargeable Battery with Ultrafast Photoâ€Charge/Discharge Rate. Advanced Energy Materials, 2019, 9, 1900872.	19.5	49
71	Effect of the cyanide-producing bacterium Chromobacterium violaceum on ultraflat Au surfaces. Chemical Geology, 2009, 265, 313-320.	3.3	48
72	Self-ordering Electrochemistry: A Simple Approach for Engineering Nanopore and Nanotube Arrays for Emerging Applications. Australian Journal of Chemistry, 2011, 64, 294.	0.9	48

#	Article	IF	Citations
73	Electrocatalytic Activity of a 2D Phosphoreneâ€Based Heteroelectrocatalyst for Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2018, 57, 2644-2647.	13.8	48
74	Nanoscale Patterning of Carbon Nanotubes: Techniques, Applications, and Future. Advanced Science, 2021, 8, 2001778.	11.2	48
75	Patterned attachment of carbon nanotubes to silane modified silicon. Carbon, 2007, 45, 2551-2558.	10.3	46
76	Simulation of Water Transport Through Functionalized Single-Walled Carbon Nanotubes (SWCNTs). Journal of Physical Chemistry C, 2012, 116, 24943-24953.	3.1	46
77	Origin of Performance Enhancement in TiO ₂ â€Carbon Nanotube Composite Perovskite Solar Cells. Small Methods, 2019, 3, 1900164.	8.6	45
78	Micropatterned Arrays of Porous Silicon: Toward Sensory Biointerfaces. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2463-2471.	8.0	43
79	Biomimetic supported lipid bilayers with high cholesterol content formed by α-helical peptide-induced vesicle fusion. Journal of Materials Chemistry, 2012, 22, 19506.	6.7	43
80	A TiO ₂ Nanofiber–Carbon Nanotubeâ€Composite Photoanode for Improved Efficiency in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 3396-3400.	6.8	43
81	Mono-crystalline Perovskite Photovoltaics toward Ultrahigh Efficiency?. Joule, 2019, 3, 311-316.	24.0	43
82	A bright future for engineering piezoelectric 2D crystals. Chemical Society Reviews, 2022, 51, 650-671.	38.1	43
83	The role of sodium dodecyl sulfate concentration in the separation of carbon nanotubes using gel chromatography. Carbon, 2013, 60, 471-480.	10.3	42
84	Multifunctional Core@Shell Magnetic Nanoprobes for Enhancing Targeted Magnetic Resonance Imaging and Fluorescent Labeling in Vitro and in Vivo. ACS Applied Materials & Eamp; Interfaces, 2017, 9, 17777-17785.	8.0	42
85	Efficiency Enhancement of Singleâ€Walled Carbon Nanotubeâ€Silicon Heterojunction Solar Cells Using Microwaveâ€Exfoliated Fewâ€Layer Black Phosphorus. Advanced Functional Materials, 2017, 27, 1704488.	14.9	42
86	Micromechanical properties of human trabecular bone: A hierarchical investigation using nanoindentation. Journal of Biomedical Materials Research - Part A, 2008, 87A, 196-202.	4.0	41
87	Impedance nanopore biosensor: influence of pore dimensions on biosensing performance. Analyst, The, 2014, 139, 1134.	3.5	41
88	Robust Forests of Vertically Aligned Carbon Nanotubes Chemically Assembled on Carbon Substrates. Langmuir, 2010, 26, 1848-1854.	3.5	40
89	Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes. Science and Technology of Advanced Materials, 2013, 14, 035004.	6.1	40
90	Ab initio study of benzene adsorption on the $Cu(110)$ surface and simulation of STM images. Surface Science, 2004, 548, 29-40.	1.9	39

#	Article	IF	Citations
91	Nanopore Gradients on Porous Aluminum Oxide Generated by Nonuniform Anodization of Aluminum. ACS Applied Materials & Diterfaces, 2010, 2, 3447-3454.	8.0	39
92	Material Properties of Lipid Microdomains: Force-Volume Imaging Study of the Effect of Cholesterol on Lipid Microdomain Rigidity. Biophysical Journal, 2010, 99, 834-844.	0.5	39
93	Nanoporous alumina-based interferometric transducers ennobled. Nanoscale, 2011, 3, 3109.	5.6	39
94	Carbonaceous Dyeâ€Sensitized Solar Cell Photoelectrodes. Advanced Science, 2015, 2, 1400025.	11.2	39
95	Plasmonic Gold Nanostars Incorporated into Highâ€Efficiency Perovskite Solar Cells. ChemSusChem, 2017, 10, 3750-3753.	6.8	39
96	Aligned Carbon Nanotube Thin Films from Liquid Crystal Polyelectrolyte Inks. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 25857-25864.	8.0	38
97	Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells. Nanomaterials, 2016, 6, 52.	4.1	38
98	Incorporation of graphene into SnO2 photoanodes for dye-sensitized solar cells. Applied Surface Science, 2016, 387, 690-697.	6.1	38
99	Singleâ€Walled Carbon Nanotube/Polyaniline/nâ€Silicon Solar Cells: Fabrication, Characterization, and Performance Measurements. ChemSusChem, 2013, 6, 320-327.	6.8	37
100	Unraveling the Interplay of Backbone Rigidity and Electron Rich Side-Chains on Electron Transfer in Peptides: The Realization of Tunable Molecular Wires. Journal of the American Chemical Society, 2014, 136, 12479-12488.	13.7	37
101	Electron transfer through \hat{l} ±-peptides attached to vertically aligned carbon nanotube arrays: a mechanistic transition. Chemical Communications, 2012, 48, 1132-1134.	4.1	36
102	Nanotube film metallicity and its effect on the performance of carbon nanotube–silicon solar cells. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1479-1487.	1.8	36
103	Implementation of antireflection layers for improved efficiency of carbon nanotube–silicon heterojunction solar cells. Solar Energy, 2015, 118, 592-599.	6.1	36
104	Electrically Sorted Single-Walled Carbon Nanotubes-Based Electron Transporting Layers for Perovskite Solar Cells. IScience, 2019, 14, 100-112.	4.1	36
105	[CF3Au(C.tplbond.NMe)] as a precursor for CVD of gold. Chemistry of Materials, 1992, 4, 979-981.	6.7	35
106	Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries. Scientific Reports, 2015, 5, 17553.	3.3	35
107	Single walled carbon nanotube network electrodes for dye solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1665-1672.	6.2	34
108	1Dâ€2D Synergistic MXeneâ€Nanotubes Hybrids for Efficient Perovskite Solar Cells. Small, 2021, 17, e2101925.	10.0	34

#	Article	IF	Citations
109	Separation of Double-Walled Carbon Nanotubes by Size Exclusion Column Chromatography. ACS Nano, 2014, 8, 6756-6764.	14.6	33
110	Superparamagnetic Fe3O4-PEG2K-FA@Ce6 Nanoprobes for in Vivo Dual-mode Imaging and Targeted Photodynamic Therapy. Scientific Reports, 2016, 6, 36187.	3.3	33
111	Matrix metalloproteinase-2-targeted superparamagnetic Fe ₃ O ₄ -PEG-G5-MMP2@Ce6 nanoprobes for dual-mode imaging and photodynamic therapy. Nanoscale, 2019, 11, 18426-18435.	5.6	33
112	Efficiency and stability enhancement of perovskite solar cells using reduced graphene oxide derived from earth-abundant natural graphite. RSC Advances, 2020, 10, 9133-9139.	3.6	33
113	Patterned polyaniline & carbon nanotube–polyaniline composites on silicon. Soft Matter, 2009, 5, 164-172.	2.7	32
114	Self-Assembly of High Density of Triangular Silver Nanoplate Films Promoted by 3-Aminopropyltrimethoxysilane. Applied Sciences (Switzerland), 2015, 5, 209-221.	2.5	32
115	Few-layer black phosphorus and boron-doped graphene based heteroelectrocatalyst for enhanced hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 20446-20452.	10.3	32
116	Photocurrent Response from Vertically Aligned Single-Walled Carbon Nanotube Arrays. Journal of Physical Chemistry C, 2010, 114, 6778-6783.	3.1	31
117	Grafting of Poly(ethylene glycol) on Click Chemistry Modified Si(100) Surfaces. Langmuir, 2013, 29, 8355-8362.	3.5	31
118	Raman spectroscopy probing of self-assembled monolayers inside the pores of gold nanotube membranes. Physical Chemistry Chemical Physics, 2011, 13, 19587.	2.8	30
119	Factors affecting carbon nanotube fillers towards enhancement of thermal conductivity in polymer nanocomposites: A review. Journal of Composite Materials, 2017, 51, 3657-3668.	2.4	30
120	3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators. MRS Communications, 2019, 9, 159-164.	1.8	30
121	Optimization and Doping of Reduced Graphene Oxide–Silicon Solar Cells. Journal of Physical Chemistry C, 2016, 120, 15648-15656.	3.1	29
122	Light-conversion phosphor nanoarchitectonics for improved light harvesting in sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 47, 100404.	11.6	29
123	Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100598.	5.6	29
124	Nanomechanical Characterization of Phospholipid Bilayer Islands on Flat and Porous Substrates: A Force Spectroscopy Study. Journal of Physical Chemistry B, 2009, 113, 10339-10347.	2.6	28
125	p-Type BP nanosheet photocatalyst with AQE of 3.9% in the absence of a noble metal cocatalyst: investigation and elucidation of photophysical properties. Journal of Materials Chemistry A, 2018, 6, 18403-18408.	10.3	28
126	Carbon Nanotubes Anchored to Silicon for Device Fabrication. Advanced Materials, 2010, 22, 557-571.	21.0	27

#	Article	IF	Citations
127	Electrochemical Detection of Copper Using a Gly-Gly-His Modified Carbon Nanotube Biosensor. Silicon, 2011, 3, 163-171.	3.3	27
128	Comparison of double-walled with single-walled carbon nanotube electrodes by electrochemistry. Carbon, 2011, 49, 2639-2647.	10.3	27
129	Surfactant Concentration Dependent Spectral Effects of Oxygen and Depletion Interactions in Sodium Dodecyl Sulfate Dispersions of Carbon Nanotubes. Journal of Physical Chemistry B, 2014, 118, 6288-6296.	2.6	27
130	Application of a hole transporting organic interlayer in graphene oxide/single walled carbon nanotube–silicon heterojunction solar cells. Journal of Materials Chemistry A, 2017, 5, 8624-8634.	10.3	27
131	Concentration dependence in microcontact printing of self-assembled monolayers (SAMs) of alkanethiols. Electrochemistry Communications, 2001, 3, 722-726.	4.7	26
132	Patterned ferrocenemethanol modified carbon nanotube electrodes on silane modified silicon. Journal of Materials Chemistry, 2007, 17, 4757.	6.7	26
133	Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells. Nanomaterials, 2013, 3, 655-673.	4.1	26
134	Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes. ChemSusChem, 2015, 8, 2940-2947.	6.8	26
135	Adhesion of chemically and electrostatically bound gold nanoparticles to a self-assembled silane monolayer investigated by atomic force volume spectroscopy. Journal of Nanoparticle Research, 2009, 11, 2013-2022.	1.9	25
136	Sulfurâ€Doped Graphene with Iron Pyrite (FeS ₂) as an Efficient and Stable Electrocatalyst for the Iodine Reduction Reaction in Dyeâ€Sensitized Solar Cells. Solar Rrl, 2017, 1, 1700011.	5.8	25
137	High-Performance Capacitive Deionization by Lignocellulose-Derived Eco-Friendly Porous Carbon Materials. Bulletin of the Chemical Society of Japan, 2020, 93, 1014-1019.	3.2	25
138	Photodissociation of nitrogen dioxide adsorbed on lithium fluoride (001). The Journal of Physical Chemistry, 1992, 96, 10983-10994.	2.9	24
139	Electrochemical and Computational Studies on Intramolecular Dissociative Electron Transfer in \hat{l}^2 -Peptides. Journal of Physical Chemistry C, 2012, 116, 26608-26617.	3.1	24
140	Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. Science and Technology of Advanced Materials, 2015, 16, 025002.	6.1	24
141	Application of Polymer Interlayers in Silicon–Carbon Nanotube Heterojunction Solar Cells. ChemNanoMat, 2015, 1, 115-121.	2.8	24
142	Large-scale immuno-magnetic cell sorting of T cells based on a self-designed high-throughput system for potential clinical application. Nanoscale, 2017, 9, 13592-13599.	5.6	24
143	Characterisation of the Binding of Cationic Amphiphilic Drugs to Phospholipid Bilayers Using Surface Plasmon Resonance. ChemMedChem, 2007, 2, 366-373.	3.2	23
144	Interaction of Silver Nanoparticles with Tethered Bilayer Lipid Membranes. Langmuir, 2015, 31, 5868-5874.	3.5	23

#	Article	IF	CITATIONS
145	TiO2 nanofiber photoelectrochemical cells loaded with sub-12Ânm AuNPs: Size dependent performance evaluation. Materials Today Energy, 2018, 9, 254-263.	4.7	23
146	The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy. Sensors, 2014, 14, 21316-21328.	3.8	22
147	Carbon nanotube modified probes for stable and high sensitivity conductive atomic force microscopy. Nanotechnology, 2016, 27, 475708.	2.6	22
148	In vivo high-efficiency targeted photodynamic therapy of ultra-small Fe3O4@polymer-NPO/PEG-Glc@Ce6 nanoprobes based on small size effect. NPG Asia Materials, 2017, 9, e383-e383.	7.9	22
149	Chemically immobilised carbon nanotubes on silicon: Stable surfaces for aqueous electrochemistry. Electrochimica Acta, 2010, 55, 3995-4001.	5.2	21
150	Functionalization of vertically aligned carbon nanotubes with polystyrene via surface initiated reversible addition fragmentation chain transfer polymerization. Applied Surface Science, 2012, 258, 2836-2843.	6.1	21
151	Human bone material characterization: integrated imaging surface investigation of male fragility fractures. Osteoporosis International, 2012, 23, 1297-1309.	3.1	21
152	Influence of dimensions, inter-distance and crystallinity of titania nanotubes (TNTs) on their photocatalytic activity. Catalysis Science and Technology, 2014, 4, 2091-2098.	4.1	21
153	Cryogenic cleavage used in gold substrate production. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2265.	1.6	20
154	Electrochemical characterisation of patterned carbon nanotube electrodes on silane modified silicon. Electrochimica Acta, 2008, 53, 5653-5659.	5.2	20
155	Lateral heterogeneities in supported bilayers from pure and mixed phosphatidylethanolamine demonstrating hydrogen bonding capacity. Biointerphases, 2008, 3, 96-104.	1.6	20
156	Labeling adipose derived stem cell sheet by ultrasmall super-paramagnetic Fe3O4 nanoparticles and magnetic resonance tracking in vivo. Scientific Reports, 2017, 7, 42793.	3.3	20
157	In vivo targeted therapy of gastric tumors via the mechanical rotation of a flower-like Fe3O4@Au nanoprobe under an alternating magnetic field. NPG Asia Materials, 2017, 9, e408-e408.	7.9	20
158	Elemental 2D Materials: Solutionâ€Processed Synthesis and Applications in Electrochemical Ammonia Production. Advanced Functional Materials, 2022, 32, 2107280.	14.9	20
159	Highly resilient field emission from aligned single-walled carbon nanotube arrays chemically attached to n-type silicon. Journal of Materials Chemistry, 2008, 18, 5753.	6.7	19
160	Electroless plated gold as a support for carbon nanotube electrodes. Electrochimica Acta, 2009, 54, 3191-3198.	5.2	19
161	Carbon nanotubes initiate the explosion of porous silicon. Materials Letters, 2010, 64, 2517-2519.	2.6	19
162	Solution Based Methods for the Fabrication of Carbon Nanotube Modified Atomic Force Microscopy Probes. Nanomaterials, 2017, 7, 346.	4.1	19

#	Article	IF	Citations
163	Dendron growth from vertically aligned single-walled carbon nanotube thin layer arrays for photovoltaic devices. Physical Chemistry Chemical Physics, 2011, 13, 6059.	2.8	18
164	Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method. Journal of Alloys and Compounds, 2015, 649, 82-88.	5 . 5	18
165	Heterojunction Solar Cells Based on Silicon and Composite Films of Polyaniline and Carbon Nanotubes. IEEE Journal of Photovoltaics, 2016, 6, 688-695.	2.5	18
166	Solution chemistry approach to fabricate vertically aligned carbon nanotubes on gold wires: towards vertically integrated electronics. Nanotechnology, 2008, 19, 445301.	2.6	17
167	Kinetics Membrane Disruption Due to Drug Interactions of Chlorpromazine Hydrochloride. Langmuir, 2009, 25, 1086-1090.	3.5	17
168	AFM study of the interaction of cytochrome P450 2C9 with phospholipid bilayers. Chemistry and Physics of Lipids, 2010, 163, 182-189.	3.2	17
169	Improved Application of Carbon Nanotube Atomic Force Microscopy Probes Using PeakForce Tapping Mode. Nanomaterials, 2018, 8, 807.	4.1	17
170	High-resolution and scalable printing of highly conductive PEDOT:PSS for printable electronics. Journal of Materials Chemistry C, 2021, 9, 14161-14174.	5 . 5	17
171	The effect of a macrocyclic constraint on electron transfer in helical peptides: A step towards tunable molecular wires. Chemical Communications, 2014, 50, 1652.	4.1	16
172	Insights into chemical doping to engineer the carbon nanotube/silicon photovoltaic heterojunction interface. Journal of Materials Chemistry A, 2017, 5, 24247-24256.	10.3	16
173	Fe3O4@S nanoparticles embedded/coated on the multi-wall carbon nanotubes for rechargeable lithium batteries. Chemical Engineering Journal, 2018, 333, 268-275.	12.7	16
174	Increased redox-active peptide loading on carbon nanotube electrodes. Electrochimica Acta, 2013, 89, 206-211.	5.2	15
175	Characterization of impedance biosensing performance of single and nanopore arrays of anodic porous alumina fabricated by focused ion beam (FIB) milling. Electrochimica Acta, 2014, 139, 225-231.	5.2	15
176	Pathway to high throughput, low cost indium-free transparent electrodes. Journal of Materials Chemistry A, 2015, 3, 13892-13899.	10.3	15
177	Solution processed graphene–silicon Schottky junction solar cells. RSC Advances, 2015, 5, 38851-38858.	3.6	15
178	SWCNT photocathodes sensitised with InP/ZnS coreâ€"shell nanocrystals. Journal of Materials Chemistry C, 2016, 4, 3379-3384.	5 . 5	15
179	Optimization of the Metal Front Contact Design for Singleâ€Walled Carbon Nanotubeâ€Silicon Heterojunction Solar Cells. Solar Rrl, 2017, 1, 1600026.	5.8	15
180	Scanning tunnelling microscopy imaging of [3 x 3] Mn nonanuclear grids. Journal of Microscopy, 2003, 212, 102-106.	1.8	14

#	Article	IF	Citations
181	Enhanced molecular chaperone activity of the small heatâ€shock protein αBâ€crystallin following covalent immobilization onto a solidâ€phase support. Biopolymers, 2011, 95, 376-389.	2.4	14
182	Combined thermal and FTIR analysis of porous silicon based nano-energetic films. RSC Advances, 2017, 7, 7338-7345.	3.6	14
183	Scanning probe microscopy characterization of immobilized enzyme molecules on a biosensor surface: Visualisation of individual molecules. Journal of the Serbian Chemical Society, 2004, 69, 93-106.	0.8	14
184	Surface morphology of ex situ sulfur-passivated ($1\tilde{A}-1$) and ($2\tilde{A}-1$) InP(100) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 163-168.	2.1	13
185	Integrating polymers with alkanethiol self-assembled monolayers (SAMs): blocking SAM defects with electrochemical polymerisation of tyramine. Electrochemistry Communications, 2002, 4, 953-958.	4.7	13
186	Mapping of defects in self-assembled monolayers by polymer decoration. Journal of Solid State Electrochemistry, 2005, 9, 512-519.	2.5	13
187	Optical and Electrochemical Properties of Singleâ€walled Carbon Nanotube Arrays Attached to Silicon (100) Surfaces. Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 18-29.	2.1	13
188	Fabrication and electrochemical behavior of vertically-aligned carbon nanotube electrodes covalently attached to p-type silicon via a thioester linkage. Materials Letters, 2009, 63, 757-760.	2.6	13
189	Chemically Grafted Carbon Nanotube Surface Coverage Gradients. Langmuir, 2010, 26, 18468-18475.	3.5	13
190	Comparison of carbon nanotube modified electrodes for photovoltaic devices. Carbon, 2012, 50, 2431-2441.	10.3	13
191	Directâ€Patterning SWCNTs Using Dip Pen Nanolithography for SWCNT/Silicon Solar Cells. Small, 2018, 14, 1800247.	10.0	13
192	Pyramidâ€Textured Antireflective Silicon Surface In Graphene Oxide/Singleâ€Wall Carbon Nanotube–Silicon Heterojunction Solar Cells. Energy and Environmental Materials, 2018, 1, 232-240.	12.8	13
193	Photochemistry of adsorbed molecules. 8. Photodissociation, photoelimination and photoreaction in vinyl chloride on lithium fluoride (001). The Journal of Physical Chemistry, 1991, 95, 1333-1338.	2.9	12
194	The influence of promoter and of electrode material on the cyclic voltammetry of Pisum sativum plastocyanin. Bioelectrochemistry, 2002, 58, 137-147.	4.6	12
195	Determination of Deterrent Profiles in Nitrocellulose Propellant Grains Using Confocal Raman Microscopy. Propellants, Explosives, Pyrotechnics, 2011, 36, 451-458.	1.6	12
196	Sensitiveness of Porous Siliconâ€Based Nanoâ€Energetic Films. Propellants, Explosives, Pyrotechnics, 2016, 41, 1029-1035.	1.6	12
197	Discontinuous Dewetting, Template-Guided Self-Assembly, and Liquid Bridge-Transfer Printing of High-Resolution Single-Walled Carbon Nanotube Lines for Next-Generation Electrodes and Interconnects. ACS Applied Nano Materials, 2020, 3, 8148-8160.	5.0	12
198	Nanoscale structure of lipid domain boundaries. Soft Matter, 2010, 6, 2193.	2.7	11

#	Article	IF	Citations
199	Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon. Nanoscale Research Letters, 2012, 7, 432.	5.7	11
200	Self assembly of bivalent glycolipids on single walled carbon nanotubes and their specific molecular recognition properties. RSC Advances, 2012, 2, 1329.	3.6	11
201	Electrochemically prepared nanoporous gold as a SERS substrate with high enhancement. RSC Advances, 2014, 4, 19502-19506.	3.6	11
202	Tin Oxide Lightâ€Scattering Layer for Titania Photoanodes in Dyeâ€Sensitized Solar Cells. Energy Technology, 2016, 4, 959-966.	3.8	11
203	Effect of Modification Protocols on the Effectiveness of Gold Nanoparticles as Drug Delivery Vehicles for Killing of Breast Cancer Cells. Australian Journal of Chemistry, 2016, 69, 1402.	0.9	11
204	High Throughput Screening of Millions of van der Waals Heterostructures for Superlubricant Applications. Advanced Theory and Simulations, 2020, 3, 2000029.	2.8	11
205	Green ammonia synthesis using CeO ₂ /RuO ₂ nanolayers on vertical graphene catalyst <i>via</i> electrochemical route in alkaline electrolyte. Nanoscale, 2022, 14, 1395-1408.	5.6	11
206	Increased performance of single walled carbon nanotube photovoltaic cells through the addition of dibenzo[b,def]chrysene derivative. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 235, 72-76.	3.9	10
207	Synthesis of ultra-long hierarchical ZnO whiskers in a hydrothermal system for dye-sensitised solar cells. RSC Advances, 2016, 6, 109406-109413.	3.6	10
208	Adsorption and Desorption of Singleâ€Stranded DNA from Singleâ€Walled Carbon Nanotubes. Chemistry - an Asian Journal, 2017, 12, 1625-1634.	3.3	10
209	Poly(thiourea triethylene glycol) as a multifunctional binder for enhanced performance in lithium-sulfur batteries. Green Energy and Environment, 2022, 7, 1206-1216.	8.7	10
210	Kinetics of concurrent desorption and diffusion into the solid: D/Zr(0001). Journal of Chemical Physics, 1997, 106, 4797-4805.	3.0	9
211	A method for production of cheap, reliable Pt–Ir tips. Review of Scientific Instruments, 2000, 71, 1702-1705.	1.3	9
212	Designing Functionalized Porphyrins Capable of Pseudo-2D Self-Assembly on Surfaces. Organic Letters, 2008, 10, 2943-2946.	4.6	9
213	ToFâ€SIMS characterisation of methane―and hydrogenâ€plasmaâ€modified graphite using principal component analysis. Surface and Interface Analysis, 2009, 41, 216-224.	1.8	9
214	Electrochemistry of polystyrene intercalated vertically aligned single- and double-walled carbon nanotubes on gold electrodes. Electrochemistry Communications, 2011, 13, 1190-1193.	4.7	9
215	Electrochemistry and Photocurrent Response from Vertically-Aligned Chemically-Functionalized Single-Walled Carbon Nanotube Arrays. Journal of the Electrochemical Society, 2011, 158, K53.	2.9	9
216	Synthesis of Highly Dispersed <scp>Fe₃O₄</scp> Submicrometer Spheres in a Oneâ€Pot Anionâ€induced Solvothermal System. Journal of the Chinese Chemical Society, 2017, 64, 217-223.	1.4	9

#	Article	IF	Citations
217	Design and measurement technique of surface-enhanced Raman scattering for detection of bisphenol A. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8, 025008.	1.5	9
218	Efficiency Improvement Using Molybdenum Disulphide Interlayers in Single-Wall Carbon Nanotube/Silicon Solar Cells. Materials, 2018, 11, 639.	2.9	9
219	The influence of pore size and oxidizing agent on the energetic properties of porous silicon. Proceedings of SPIE, 2008, , .	0.8	8
220	Field emission from single-, double-, and multi-walled carbon nanotubes chemically attached to silicon. Journal of Applied Physics, 2012, 111, 044326.	2.5	8
221	The effects of surface functionality positioning on the transport properties of membranes. Journal of Membrane Science, 2012, 411-412, 211-218.	8.2	8
222	Hydrothermal Synthesis of Monodispersed <scp>BaGdF₅</scp> :Yb/Er Nanoparticles for <scp>CT</scp> and <scp>MR</scp> Imaging. Journal of the Chinese Chemical Society, 2016, 63, 977-984.	1.4	8
223	Electrocatalytic Activity of a 2D Phosphoreneâ€Based Heteroelectrocatalyst for Photoelectrochemical Cells. Angewandte Chemie, 2018, 130, 2674-2677.	2.0	8
224	Tensile behaviour of individual fibre bundles in the human lumbar anulus fibrosus. Journal of Biomechanics, 2018, 67, 24-31.	2.1	8
225	Impedance Spectroscopy Study of Nanopore Arrays for Biosensing Applications. Science of Advanced Materials, 2014, 6, 1375-1381.	0.7	8
226	Plasmaâ€Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
227	RF plasma functionalized carbon surfaces for supporting sensor architectures. Current Applied Physics, 2008, 8, 376-379.	2.4	7
228	Ag2SO4 decorated with fluorescent Agn nanoclusters. Applied Surface Science, 2013, 270, 77-81.	6.1	7
229	Nanostructured biointerfaces created from carbon nanotube patterned porous silicon films. Surface and Coatings Technology, 2013, 224, 49-56.	4.8	7
230	In situ monitoring of the effect of ionic strength and pH on plasma polymer thin films. Plasma Processes and Polymers, 2017, 14, 1700084.	3.0	7
231	Application of Hole-Transporting Materials as the Interlayer in Graphene Oxide/Single-Wall Carbon Nanotube Silicon Heterojunction Solar Cells. Australian Journal of Chemistry, 2017, 70, 1202.	0.9	7
232	Ambient air synthesis of multi-layer CVD graphene films for low-cost, efficient counter electrode material in dye-sensitized solar cells. FlatChem, 2018, 8, 1-8.	5.6	7
233	A Comparative Study on the Role of Polyvinylpyrrolidone Molecular Weight on the Functionalization of Various Carbon Nanotubes and Their Composites. Polymers, 2021, 13, 2447.	4.5	7
234	Active Learning in Bayesian Neural Networks for Bandgap Predictions of Novel Van der Waals Heterostructures. Advanced Intelligent Systems, 0, , 2100080.	6.1	7

#	Article	IF	CITATIONS
235	Sulfur-Functionalized Titanium Carbide Ti ₃ C ₂ T _{<i>x</i>} (MXene) Nanosheets Modified Light Absorbers for Ambient Fabrication of Sb ₂ S ₃ Solar Cells. ACS Applied Nano Materials, 2022, 5, 12107-12116.	5.0	7
236	Which Parameters Affect the Response of the Channel Biosensor?. Electroanalysis, 2003, 15, 183-190.	2.9	6
237	Transition from single to multi-walled carbon nanotubes grown by inductively coupled plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2011, 110, .	2.5	6
238	Dye functionalisation of PAMAM-type dendrons grown from vertically aligned single-walled carbon nanotube arrays for light harvesting antennae. Journal of Materials Chemistry, 2011, 21, 18597.	6.7	6
239	Laser shock ignition of porous silicon based nano-energetic films. Journal of Applied Physics, 2014, 116, 054912.	2.5	6
240	Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins. Xenobiotica, 2015, 45, 847-857.	1.1	6
241	Role of Molecular Weight in Polymer Wrapping and Dispersion of MWNT in a PVDF Matrix. Polymers, 2019, 11, 162.	4.5	6
242	Dynamics of Phospholipid Membrane Growth and Drug-Membrane Interactions Probed by Atomic Force Microscopy. Journal of Scanning Probe Microscopy, 2007, 2, 41-45.	0.0	6
243	Atomic Force Microscopy Imaging of Glucose Oxidase using Chemically Modified Tips. Australian Journal of Chemistry, 2003, 56, 1039.	0.9	5
244	Pore spanning lipid bilayers on silanised nanoporous alumina membranes. Proceedings of SPIE, 2008, , .	0.8	5
245	Photocurrent response from vertically aligned single-walled carbon nanotube arrays. , 2010, , .		5
246	High-order graphene oxide nanoarchitectures. Nanoscale, 2011, 3, 3076.	5.6	5
247	The Potential of Gold Nanoparticle Conjugates to Kill Cancer Cells in Culture. Procedia Engineering, 2014, 92, 26-29.	1.2	5
248	Vortex Fluidics Improved Morphology of CH ₃ NH ₃ Pbl _{3â€x} Cl _x Films for Perovskite Solar Cells. ChemistrySelect, 2017, 2, 369-374.	1.5	5
249	Direct deposition of silver nanoplates on quartz surface by sequence pre-treatment hydroxylation and silanisation. MethodsX, 2017, 4, 486-491.	1.6	5
250	Mechanism of Laser Initiated Carbon Nanotube Ignition. Propellants, Explosives, Pyrotechnics, 2018, 43, 869-878.	1.6	5
251	The Use of Gravity Filtration of Carbon Nanotubes from Suspension to Produce Films with Low Roughness for Carbon Nanotube/Silicon Heterojunction Solar Device Application. Applied Sciences (Switzerland), 2020, 10, 6415.	2.5	5
252	Advanced Microscopic Characterisation through Integrated Learning Tools. Microscopy and Microanalysis, 2011, 17, 870-871.	0.4	4

#	Article	IF	CITATIONS
253	HIV-1 antibodies and vaccine antigen selectively interact with lipid domains. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2662-2669.	2.6	4
254	Microbial cell lysis and nucleic acid extraction via nanofluidic channel. RSC Advances, 2015, 5, 23886-23891.	3.6	4
255	Online Education and Training for Microscopy and Microanalysis: MyScope TM . Microscopy Today, 2016, 24, 44-49.	0.3	4
256	Synthesis of silver–platinum nanoferns substrates used in surface-enhanced Raman spectroscopy sensors to detect creatinine. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8, 025015.	1.5	4
257	Specific Targeting of Breast Cancer Cells with Antibodies Conjugated Gold Nanoparticles. Drug Delivery Letters, 2018, 8, 217-225.	0.5	4
258	Broadening of van Hove Singularities Measured by Photoemission Spectroscopy of Single- and Mixed-Chirality Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 26683-26694.	3.1	4
259	Thickness/morphology of functional material patterned by topographical discontinuous dewetting. Nano Select, 2021, 2, 1723-1740.	3.7	4
260	High-Resolution R2R-Compatible Printing of Carbon Nanotube Conductive Patterns Enabled by Cellulose Nanocrystals. ACS Applied Nano Materials, 2022, 5, 1574-1587.	5.0	4
261	Scanning tunneling microscopy investigation of nonanuclear [3 \tilde{A} — 3] MnIIsupramolecular grids. Smart Materials and Structures, 2006, 15, S171-S177.	3.5	3
262	NANOSCALE BIOSENSORS AND BIOCHIPS. Annual Review of Nano Research, 2009, , 1-82.	0.2	3
263	Enhancing Upconversion Luminescence Efficiency via Chiral β-NaYF4:Er3+/Yb3+ Microcrystals Based on Mesoscale Regulation. ACS Omega, 2018, 3, 18730-18738.	3.5	3
264	Application of A Novel, Non-Doped, Organic Hole-Transport Layer into Single-Walled Carbon Nanotube/Silicon Heterojunction Solar Cells. Applied Sciences (Switzerland), 2019, 9, 4721.	2.5	3
265	Spatially isolated redox processes enabled by ambipolar charge transport in multi-walled carbon nanotube mats. Materials Horizons, 2021, 8, 1304-1313.	12.2	3
266	Investigation of the pH Dependent Cytotoxicity of Paclitaxel Conjugated Gold Nanoparticles. Pharmaceutical Nanotechnology, 2017, 5, 111-118.	1.5	3
267	Absorption energetics and simulation of STM images for fluorobenzene on the $Cu(110)$ surface. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 1109-1120.	2.0	2
268	Preparation, characterization and electrochemistry of carbon nanotubes directly attached to Si(100) surfaces. , 2006, , .		2
269	Nanosphere Lithography Using Thermal Evaporation of Gold. , 2006, , .		2
270	Silane functionalisation of iron oxide nanoparticles., 2008,,.		2

#	Article	IF	Citations
271	Effect of Silver Concentration towards Formationof AgPt Nanofernfilms as SERS Substrates. Materials Science Forum, 2019, 948, 231-236.	0.3	2
272	A microarray platform for the creation of a matrix of site-specific transformed cells. , 2002, , .		2
273	Exfoliated 2D Antimoneneâ€Based Structures for Lightâ€Harvesting Photoactive Layer of Highly Stable Solar Cells. Small Structures, 0, , 2200038.	12.0	2
274	Imaging molecular adsorbates using scanning tunnelling microscopy and image processing. Smart Materials and Structures, 2002, 11, 679-685.	3.5	1
275	Teaching Undergraduates Nanotechnology. Materials Research Society Symposia Proceedings, 2004, 827, 151.	0.1	1
276	Plasma modified carbon surfaces for supporting sensor architectures., 2006, 6413, 23.		1
277	Mixed assembly of ferrocene/porphyrin onto carbon nanotube arrays towards multibit information storage. , 2008, , .		1
278	Engineered gold nanotube membranes for molecular separations. , 2008, , .		1
279	Surface mounted porphyrin-nanotube arrays: Towards energy-harvesting surfaces., 2008,,.		1
280	Integration of enzyme immobilised single-walled carbon nanotube arrays into microfluidic devices for glucose detection. , 2008, , .		1
281	Preparation and characterization of multiwalled carbon nanotube (MWCNT)/polymer nanostructured materials. Proceedings of SPIE, 2008, , .	0.8	1
282	High resolution chemical mapping of biomimetic membranes by force volume imaging. , 2008, , .		1
283	Preparation and characterisation of vertically aligned single-walled carbon nanotube arrays on porous silicon., 2008,,.		1
284	Water transport through nanoporous materials: Porous silicon and single walled carbon nanotubes. , 2010, , .		1
285	Graphene masks as passivation layers in the electrochemical etching of silicon. Journal of Materials Science, 2014, 49, 7819-7823.	3.7	1
286	A TiO2Nanofiber-Carbon Nanotube-Composite Photoanode for Improved Efficiency in Dye-Sensitized Solar Cells. ChemSusChem, 2015, 8, 3351-3351.	6.8	1
287	Optimum growth time in AgPt nanofern preparation for enhancement of surface-enhanced Raman scattering intensity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 045012.	1.5	1
288	Preparation of Hybrid Molybdenum Disulfide/Single Wall Carbon Nanotube–n-Type Silicon Solar Cells. Applied Sciences (Switzerland), 2020, 10, 287.	2.5	1

#	Article	IF	Citations
289	Highly adhesive and disposable inorganic barrier films: made from 2D silicate nanosheets and water. Journal of Materials Chemistry A, 2022, 10, 1956-1964.	10.3	1
290	Plasma Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films. Angewandte Chemie, 0, , .	2.0	1
291	Exfoliated 2D Antimoneneâ€Based Structures for Lightâ€Harvesting Photoactive Layer of Highly Stable Solar Cells. Small Structures, 2022, 3, .	12.0	1
292	Characterisation of chlorpromazine binding to lipid bilayer membranes. , 2006, , .		0
293	Preparation of Catalytic Substrates with Ordered Size of Iron Nanoparticles for Production Carbon Nanotubes. , 2006, , .		0
294	Optical properties of covalently anchored single-walled carbon nanotube arrays on silicon (100) surfaces., 2006, 6415, 36.		0
295	Preparation of Carbon Surfaces for Sensing Applications via Plasma Hydrogenation. , 2006, , .		0
296	Patterned attachment of carbon nanotubes to silicon. , 2008, , .		0
297	Characterisation of methane plasma treated carbon surfaces. , 2008, , .		0
298	Hydrogenation of sp2-bonded carbon surfaces using methane plasma. Applied Surface Science, 2010, 256, 1888-1894.	6.1	0
299	Peptide modified SWNT array-based copper sensor. , 2010, , .		0
300	Gold nanotube membranes; fabrication of controlled pore geometries and tailored surface chemistries. , 2010 , , .		0
301	Single walled carbon nanotube array as working electrode for dye solar cells. , 2010, , .		0
302	Raman Characterisation of Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapour Deposition. Materials Science Forum, 2011, 700, 112-115.	0.3	0
303	The Benefit and Impact of On-Line Tools for Microscopy and Microanalysis Training and Education in Core Facilities Microscopy and Microanalysis, 2014, 20, 2158-2159.	0.4	0
304	Solar Power: Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes (Adv. Sci. 3/2015). Advanced Science, 2015, 2, .	11.2	0
305	Back Cover: Solar RRL 2â^•2017. Solar Rrl, 2017, 1, 1770108.	5.8	0
306	Back Cover: Solar RRL 3â€4â^•2017. Solar Rrl, 2017, 1, 1770113.	5.8	0

#	Article	IF	CITATIONS
307	Dip Pen Nanolithography: Direct-Patterning SWCNTs Using Dip Pen Nanolithography for SWCNT/Silicon Solar Cells (Small 16/2018). Small, 2018, 14, 1870071.	10.0	0
308	Localization and uptake of fluorescently labelled gold nanoparticles by a t47d human breast cancer cell line. International Journal of Pharma and Bio Sciences, 2017, 8, .	0.1	0