
Claire S Grierson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4310983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ChipSeg: An Automatic Tool to Segment Bacterial and Mammalian Cells Cultured in Microfluidic Devices. ACS Omega, 2021, 6, 2473-2476.	3.5	13
2	A Centrifuge-Based Method for Identifying Novel Genetic Traits That Affect Root-Substrate Adhesion in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 602486.	3.6	3
3	Harnessing the central dogma for stringent multi-level control of gene expression. Nature Communications, 2021, 12, 1738.	12.8	26
4	Cheetah: A Computational Toolkit for Cybergenetic Control. ACS Synthetic Biology, 2021, 10, 979-989.	3.8	23
5	Towards an engineering theory of evolution. Nature Communications, 2021, 12, 3326.	12.8	33
6	Testing Theoretical Minimal Genomes Using Whole-Cell Models. ACS Synthetic Biology, 2021, 10, 1598-1604.	3.8	5
7	Understanding Metabolic Flux Behaviour in Whole-Cell Model Output. Frontiers in Molecular Biosciences, 2021, 8, 732079.	3.5	5
8	Furthering genome design using models and algorithms. Current Opinion in Systems Biology, 2020, 24, 120-126.	2.6	2
9	<i>In Vivo</i> Feedback Control of an Antithetic Molecular-Titration Motif in <i>Escherichia coli</i> Using Microfluidics. ACS Synthetic Biology, 2020, 9, 2617-2624.	3.8	37
10	Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic With Systems Biology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 942.	4.1	25
11	Designing minimal genomes using whole-cell models. Nature Communications, 2020, 11, 836.	12.8	37
12	Genome-driven cell engineering review: <i>in vivo</i> and <i>in silico</i> metabolic and genome engineering. Essays in Biochemistry, 2019, 63, 267-284.	4.7	13
13	Developing a graduate training program in Synthetic Biology: SynBioCDT. Synthetic Biology, 2019, 4, ysz006.	2.2	5
14	Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks. Science Advances, 2018, 4, eaap9751.	10.3	40
15	BSim 2.0: An Advanced Agent-Based Cell Simulator. ACS Synthetic Biology, 2017, 6, 1969-1972.	3.8	43
16	<i>In-Silico</i> Analysis and Implementation of a Multicellular Feedback Control Strategy in a Synthetic Bacterial Consortium. ACS Synthetic Biology, 2017, 6, 507-517.	3.8	54
17	An Orthogonal Multi-input Integration System to Control Gene Expression in <i>Escherichia coli</i> . ACS Synthetic Biology, 2017, 6, 1816-1824.	3.8	52
18	A proteomic approach identifies many novel palmitoylated proteins in <scp>A</scp> rabidopsis. New Phytologist, 2013, 197, 805-814.	7.3	135

CLAIRE S GRIERSON

#	Article	IF	CITATIONS
19	Evolving dynamical networks: A formalism for describing complex systems. Complexity, 2012, 17, 18-25.	1.6	34
20	A Multi-Functional Synthetic Gene Network: A Frequency Multiplier, Oscillator and Switch. PLoS ONE, 2011, 6, e16140.	2.5	26
21	The Ankyrin Repeats and DHHC S-acyl Transferase Domain of AKR1 Act Independently to Regulate Switching from Vegetative to Mating States in Yeast. PLoS ONE, 2011, 6, e28799.	2.5	21
22	The dynamic plant cell. Current Opinion in Plant Biology, 2010, 13, 621-622.	7.1	0
23	A comparative analysis of synthetic genetic oscillators. Journal of the Royal Society Interface, 2010, 7, 1503-1524.	3.4	180
24	Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity. Journal of Cell Science, 2010, 123, 340-350.	2.0	80
25	phytochrome B and PIF4 Regulate Stomatal Development in Response to Light Quantity. Current Biology, 2009, 19, 229-234.	3.9	164
26	Auxin transport through non-hair cells sustains root-hair development. Nature Cell Biology, 2009, 11, 78-84.	10.3	212
27	Multiple roles for protein palmitoylation in plants. Trends in Plant Science, 2008, 13, 295-302.	8.8	90
28	Phytochrome coordinates Arabidopsis shoot and root development. Plant Journal, 2007, 50, 429-438.	5.7	180
29	The TIP GROWTH DEFECTIVE1 ÂS-Acyl Transferase Regulates Plant Cell Growth in Arabidopsis Â. Plant Cell, 2005, 17, 2554-2563.	6.6	133
30	The Arabidopsis COW1 gene encodes a phosphatidylinositol transfer protein essential for root hair tip growth. Plant Journal, 2004, 40, 686-698.	5.7	93
31	OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature, 2004, 427, 858-861.	27.8	556
32	The Arabidopsis 14-3-3 protein, GF14?, binds to the Schizosaccharomyces pombe Cdc25 phosphatase and rescues checkpoint defects in the rad24? mutant. Planta, 2003, 218, 50-57.	3.2	30
33	A simple method for obtaining cell-specific cDNA from small numbers of growing root-hair cells in Arabidopsis thaliana. Journal of Experimental Botany, 2003, 54, 1373-1378.	4.8	13
34	The Arabidopsis Rop2 GTPase Is a Positive Regulator of Both Root Hair Initiation and Tip Growth. Plant Cell, 2002, 14, 763-776.	6.6	393
35	Positioning of Nuclei in Arabidopsis Root Hairs. Plant Cell, 2002, 14, 2941-2955.	6.6	208
36	Arabidopsis genes with roles in root hair development. Journal of Plant Nutrition and Soil Science, 2001, 164, 131-140.	1.9	55

CLAIRE S GRIERSON

#	Article	IF	CITATIONS
37	Biolistic transformation of Arabidopsis root hairs: a novel technique to facilitate map-based cloning. Plant Journal, 2001, 27, 367-371.	5.7	6
38	Genetic Interactions during Root Hair Morphogenesis in Arabidopsis. Plant Cell, 2000, 12, 1961-1974.	6.6	207
39	TIP1 is required for both tip growth and non-tip growth in Arabidopsis. New Phytologist, 1998, 138, 49-58.	7.3	78
40	Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant Journal, 1994, 5, 815-826.	5.7	176
41	DNA-binding properties of cloned TATA-binding protein from potato tubers. Plant Molecular Biology, 1992, 19, 455-464.	3.9	27