
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/431074/publications.pdf Version: 2024-02-01

XUEUE HUANC

#	Article	IF	CITATIONS
1	Research on Advanced Materials for Liâ€ion Batteries. Advanced Materials, 2009, 21, 4593-4607.	21.0	1,633
2	Hard Carbon Microtubes Made from Renewable Cotton as Highâ€Performance Anode Material for Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1600659.	19.5	655
3	Monodispersed hard carbon spherules with uniform nanopores. Carbon, 2001, 39, 2211-2214.	10.3	644
4	Building aqueous K-ion batteries for energy storage. Nature Energy, 2019, 4, 495-503.	39.5	630
5	Rational design of layered oxide materials for sodium-ion batteries. Science, 2020, 370, 708-711.	12.6	616
6	Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nature Energy, 2019, 4, 594-603.	39.5	572
7	Prototype Sodiumâ€ion Batteries Using an Air‣table and Co/Niâ€Free O3‣ayered Metal Oxide Cathode. Advanced Materials, 2015, 27, 6928-6933.	21.0	504
8	Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Materials, 2017, 7, 130-151.	18.0	469
9	Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochimica Acta, 2011, 56, 4869-4875.	5.2	435
10	Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 71-77.	10.3	432
11	Single Lithiumâ€ion Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie - International Edition, 2016, 55, 2521-2525.	13.8	411
12	The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics, 2000, 135, 181-191.	2.7	401
13	Alumina oated Patterned Amorphous Silicon as the Anode for a Lithiumâ€Ion Battery with High Coulombic Efficiency. Advanced Materials, 2011, 23, 4938-4941.	21.0	397
14	A comparative study of Fd-3m and P4332 "LiNi0.5Mn1.5O4― Solid State Ionics, 2011, 193, 32-38.	2.7	327
15	A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 96-104.	10.3	322
16	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Letters, 2018, 3, 1212-1218.	17.4	321
17	Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications, 2015, 6, 6401.	12.8	316
18	Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2509-A2528.	2.9	289

#	Article	IF	CITATIONS
19	Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochimica Acta, 2014, 133, 529-538.	5.2	273
20	Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochimica Acta, 2013, 93, 254-263.	5.2	257
21	First-principles study of Li ion diffusion inLiFePO4. Physical Review B, 2004, 69, .	3.2	250
22	Enhancement of electronic conductivity ofLiFePO4by Cr doping and its identification by first-principles calculations. Physical Review B, 2003, 68, .	3.2	249
23	A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13046-13052.	10.3	246
24	Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Materials, 2016, 5, 191-197.	18.0	239
25	A Selfâ€Forming Composite Electrolyte for Solidâ€State Sodium Battery with Ultralong Cycle Life. Advanced Energy Materials, 2017, 7, 1601196.	19.5	231
26	Surface Structure Evolution of LiMn ₂ O ₄ Cathode Material upon Charge/Discharge. Chemistry of Materials, 2014, 26, 3535-3543.	6.7	223
27	Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ionics, 2002, 148, 335-342.	2.7	204
28	Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ionics, 2002, 152-153, 43-50.	2.7	197
29	Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Letters, 2020, 5, 826-832.	17.4	192
30	Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries. Journal of the Electrochemical Society, 2001, 148, A915.	2.9	191
31	Preâ€Oxidationâ€Tuned Microstructures of Carbon Anodes Derived from Pitch for Enhancing Na Storage Performance. Advanced Energy Materials, 2018, 8, 1800108.	19.5	179
32	Electrochemical Evaluation and Structural Characterization of Commercial LiCoO[sub 2] Surfaces Modified with MgO for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2002, 149, A466.	2.9	175
33	Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 4361-4365.	13.8	171
34	Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Science Advances, 2015, 1, e1500330.	10.3	170
35	Correlated Migration Invokes Higher Na ⁺ â€lon Conductivity in NaSICONâ€Type Solid Electrolytes. Advanced Energy Materials, 2019, 9, 1902373.	19.5	162
36	A Novel High Capacity Positive Electrode Material with Tunnelâ€Type Structure for Aqueous Sodiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1501005.	19.5	161

#	Article	IF	CITATIONS
37	Studies of Stannic Oxide as an Anode Material for Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1998, 145, 59-62.	2.9	156
38	Nano-alloy anode for lithium ion batteries. Solid State Ionics, 2002, 148, 247-258.	2.7	155
39	Nanosized SnSb Alloy Pinning on Hard Non-Graphitic Carbon Spherules as Anode Materials for a Li Ion Battery. Chemistry of Materials, 2002, 14, 103-108.	6.7	153
40	A ceramic/polymer composite solid electrolyte for sodium batteries. Journal of Materials Chemistry A, 2016, 4, 15823-15828.	10.3	152
41	Insight into the Atomic Structure of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Material in the First Cycle. Chemistry of Materials, 2015, 27, 292-303.	6.7	151
42	Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon, 2005, 43, 11-16.	10.3	132
43	Interfacial engineering to achieve an energy density of over 200 Wh kgâ~'1 in sodium batteries. Nature Energy, 2022, 7, 511-519.	39.5	130
44	Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics, 2002, 152-153, 341-346.	2.7	125
45	From Solidâ€Solution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte Chemie - International Edition, 2020, 59, 534-538.	13.8	124
46	Epitaxial Induced Plating Current ollector Lasting Lifespan of Anodeâ€Free Lithium Metal Battery. Advanced Energy Materials, 2021, 11, 2003709.	19.5	119
47	Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction. Journal of Power Sources, 2012, 216, 131-138.	7.8	117
48	Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithiumâ€Rich Cathode Oxides. Angewandte Chemie - International Edition, 2019, 58, 4323-4327.	13.8	114
49	Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Research, 2015, 8, 2654-2662.	10.4	109
50	Electrochemical and In Situ Synchrotron XRD Studies on Al[sub 2]O[sub 3]-Coated LiCoO[sub 2] Cathode Material. Journal of the Electrochemical Society, 2004, 151, A1344.	2.9	108
51	Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries. Journal of Materials Chemistry, 2001, 11, 1502-1505.	6.7	98
52	Novel Largeâ€ S cale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray Drying Approach for Li–S Batteries. Advanced Energy Materials, 2015, 5, 1500046.	19.5	96
53	Ag-enhanced SEI formation on Si particles for lithium batteries. Electrochemistry Communications, 2003, 5, 935-939.	4.7	94
54	Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: Effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochimica Acta, 2014, 149, 370-385.	5.2	91

#	Article	IF	CITATIONS
55	Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochimica Acta, 2016, 187, 186-192.	5.2	91
56	Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes. RSC Advances, 2016, 6, 32454-32461.	3.6	90
57	Dendrite-Free Lithium Deposition with Self-Aligned Columnar Structure in a Carbonate–Ether Mixed Electrolyte. ACS Energy Letters, 2017, 2, 1296-1302.	17.4	90
58	Unusual Spinel-to-Layered Transformation in LiMn ₂ O ₄ Cathode Explained by Electrochemical and Thermal Stability Investigation. ACS Applied Materials & Interfaces, 2017, 9, 35463-35475.	8.0	90
59	Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries. Solid State Ionics, 2007, 178, 265-271.	2.7	87
60	Novel Li[(CF ₃ SO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. ACS Applied Materials & Interfaces, 2016, 8, 29705-29712.	8.0	87
61	Obtaining ultra-long copper nanowires via a hydrothermal process. Science and Technology of Advanced Materials, 2005, 6, 761-765.	6.1	85
62	Performance Improvement of Surface-Modified LiCoO[sub 2] Cathode Materials: An Infrared Absorption and X-Ray Photoelectron Spectroscopic Investigation. Journal of the Electrochemical Society, 2003, 150, A199.	2.9	82
63	Advanced Characterization Techniques in Promoting Mechanism Understanding for Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707543.	14.9	81
64	Cr[sub 2]O[sub 3]-Based Anode Materials for Li-Ion Batteries. Electrochemical and Solid-State Letters, 2005, 8, A66.	2.2	79
65	4.2Â V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance. Energy Storage Materials, 2020, 32, 191-198.	18.0	77
66	Sodium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolytes for Sodiumâ€lon Batteries. ChemElectroChem, 2016, 3, 1741-1745.	3.4	76
67	A new Na[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-based polymer electrolyte for solid-state sodium batteries. Journal of Materials Chemistry A, 2017, 5, 7738-7743.	10.3	76
68	A spray drying approach for the synthesis of a Na ₂ C ₆ H ₂ O ₄ /CNT nanocomposite anode for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 13193-13197.	10.3	75
69	Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi _{0.5} Mn _{1.5} O ₄ cathode material at elevated temperatures. Journal of Materials Chemistry A, 2017, 5, 822-834.	10.3	75
70	Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries. Journal of Power Sources, 2017, 372, 270-275.	7.8	74
71	lodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo ₆ S ₈ Nanosheets for Advanced Multivalent Batteries. ACS Nano, 2020, 14, 1102-1110.	14.6	72
72	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie - International Edition, 2021, 60, 17547-17555.	13.8	72

#	Article	IF	CITATIONS
73	Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. ACS Applied Materials & Interfaces, 2016, 8, 32631-32636.	8.0	71
74	A class of liquid anode for rechargeable batteries with ultralong cycle life. Nature Communications, 2017, 8, 14629.	12.8	71
75	Liâ€Rich Li ₂ [Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296.	13.8	71
76	Spectroscopic studies on interactions and microstructures in propylene carbonate?LiTFSI electrolytes. Journal of Raman Spectroscopy, 2001, 32, 900-905.	2.5	70
77	Interface Concentratedâ€Confinement Suppressing Cathode Dissolution in Waterâ€inâ€5alt Electrolyte. Advanced Energy Materials, 2020, 10, 2000665.	19.5	70
78	Improved Cycling Stability of Lithiumâ€Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem, 2016, 3, 531-536.	3.4	67
79	Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature. Journal of Materials Chemistry, 2000, 10, 693-696.	6.7	64
80	Investigation of the structural changes in Li1â^'xFePO4 upon charging by synchrotron radiation techniques. Journal of Materials Chemistry, 2011, 21, 11406.	6.7	64
81	Origin of Solid Electrolyte Interphase on Nanosized LiCoO[sub 2]. Electrochemical and Solid-State Letters, 2006, 9, A328.	2.2	63
82	Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7, .	10.3	63
83	Improved Electrochemical Performances of Surface-Modified Spinel LiMn[sub 2]O[sub 4] for Long Cycle Life Lithium-Ion Batteries. Journal of the Electrochemical Society, 2003, 150, A1294.	2.9	62
84	Novel Concentrated Li[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. ACS Applied Materials & Interfaces, 2017, 9, 4282-4289.	8.0	62
85	Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nature Communications, 2018, 9, 3341.	12.8	60
86	First-principles investigation of the structural, magnetic, and electronic properties of olivineLiFePO4. Physical Review B, 2005, 71, .	3.2	57
87	Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: The role of oxygen vacancies and cation doping. Computational Materials Science, 2016, 115, 109-116.	3.0	57
88	Realizing long-term cycling stability and superior rate performance of 4.5ÂV–LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method. Journal of Power Sources, 2020, 470, 228423.	7.8	57
89	Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 2021, 13, 1061-1069.	13.6	57
90	Competition Between the Plasticizer and Polymer on Associating with Li +  lons in Polyacrylonitrileâ€Based Electrolytes. Journal of the Electrochemical Society, 1997, 144, 778-786.	2.9	55

#	Article	IF	CITATIONS
91	Electrochemical behavior and surface structural change of LiMn ₂ O ₄ charged to 5.1 V. Journal of Materials Chemistry A, 2014, 2, 14519-14527.	10.3	54
92	The effect of cation doping on spinel LiMn2O4: a first-principles investigation. Solid State Communications, 2003, 126, 531-534.	1.9	52
93	First-principles studies of cation-doped spinelLiMn2O4for lithium ion batteries. Physical Review B, 2003, 67, .	3.2	51
94	Understanding Surface Structural Stabilization of the High-Temperature and High-Voltage Cycling Performance of Al ³⁺ -Modified LiMn ₂ O ₄ Cathode Material. ACS Applied Materials & Interfaces, 2018, 10, 550-559.	8.0	51
95	Influence of micropore structure on Li-storage capacity in hard carbon spherules. Solid State Ionics, 2005, 176, 1151-1159.	2.7	48
96	Characterization of Spontaneous Reactions of LiCoO[sub 2] with Electrolyte Solvent for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2004, 151, A1641.	2.9	47
97	Sodiumâ€Deficient O3â€Na _{0.9} [Ni _{0.4} Mn <i>_x</i> Ti _{0.6â[^]<i>x</i>}]O ₂ Layeredâ€Oxide Cathode Materials for Sodiumâ€Ion Batteries. Particle and Particle Systems Characterization. 2016. 33. 538-544.	2.3	47
98	Using Li2S to Compensate for the Loss of Active Lithium in Li-ion Batteries. Electrochimica Acta, 2017, 255, 212-219.	5.2	47
99	A Better Choice to Achieve High Volumetric Energy Density: Anodeâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2022, 34, e2110323.	21.0	46
100	Atomic insight into electrochemical inactivity of lithium chromate (LiCrO2): Irreversible migration of chromium into lithium layers in surface regions. Journal of Power Sources, 2015, 273, 1218-1225.	7.8	45
101	Dispersion effects of Raman lines in carbons. Journal of Applied Physics, 1998, 84, 227-231.	2.5	44
102	Impact of Anionic Structure of Lithium Salt on the Cycling Stability of Lithium-Metal Anode in Li-S Batteries. Journal of the Electrochemical Society, 2016, 163, A1776-A1783.	2.9	40
103	Lowâ€Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries' Lifetime. Advanced Materials, 2021, 33, e2102034.	21.0	39
104	First-principle investigations of N doping in LiFePO4. Solid State Communications, 2008, 147, 505-509.	1.9	38
105	Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity. Electrochimica Acta, 2009, 54, 6565-6569.	5.2	38
106	Structural, electronic and Li diffusion properties of LiFeSO4F. Solid State Ionics, 2010, 181, 1209-1213.	2.7	38
107	Understanding the Formation of the Truncated Morphology of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ via Direct Atomic-Level Structural Observations. Chemistry of Materials, 2018, 30, 2174-2182.	6.7	38
108	Application of Li ₂ S to compensate for loss of active lithium in a Si–C anode. Journal of Materials Chemistry A, 2018, 6, 6206-6211.	10.3	37

#	Article	IF	CITATIONS
109	Characterizations of crystalline structure and electrical properties of pyrolyzed polyfurfuryl alcohol. Journal of Applied Physics, 1997, 82, 5705-5710.	2.5	36
110	Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€Ion Batteries. Angewandte Chemie, 2019, 131, 4405-4409.	2.0	36
111	Novel 1.5 V anode materials, ATiOPO4(A = NH4, K, Na), for room-temperature sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7141-7147.	10.3	35
112	Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties. Journal of Power Sources, 2015, 296, 142-149.	7.8	30
113	Raising the Intrinsic Safety of Layered Oxide Cathodes by Surface Re‣ithiation with LLZTO Garnetâ€Ţype Solid Electrolytes. Advanced Materials, 2022, 34, e2200655.	21.0	30
114	Ab initiostudies on the stability and electronic structure ofLiCoO2(003) surfaces. Physical Review B, 2005, 71, .	3.2	29
115	Needle-like LiFePO4 thin films prepared by an off-axis pulsed laser deposition technique. Thin Solid Films, 2009, 517, 2618-2622.	1.8	29
116	Improving the High-Temperature Resilience of LiMn ₂ O ₄ Based Batteries: LiFNFSI an Effective Salt. Journal of the Electrochemical Society, 2012, 159, A1158-A1164.	2.9	29
117	From Solidâ€ S olution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte Chemie, 2020, 132, 542-546.	2.0	28
118	TC-MS analysis on thermal decomposable components in the SEI film on Cr2O3 powder anode in Li-ion batteries. Ionics, 2009, 15, 91-96.	2.4	27
119	Si-Cu Thin Film Electrode with Kirkendall Voids Structure for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A2076-A2081.	2.9	26
120	Single Lithiumâ€lon Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie, 2016, 128, 2567-2571.	2.0	26
121	Dense Allâ€Electrochemâ€Active Electrodes for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2021, 33, e2008723.	21.0	26
122	Surface-Enhanced Raman Scattering Study on Passivating Films of Ag Electrodes in Lithium Batteries. Journal of Physical Chemistry B, 2000, 104, 8477-8480.	2.6	25
123	Impact of High Valence State Cation Ti/Ta Surface Doping on the Stabilization of Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Materials: A Systematic Density Functional Theory Investigation. Advanced Materials Interfaces, 2018, 5, 1800077.	3.7	25
124	Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 2020, 20, 6852-6858.	9.1	25
125	Agglomeration and the surface passivating film of Ag nano-brush electrode in lithium batteries. Solid State lonics, 2002, 149, 185-192.	2.7	24
126	Investigation of Lithium Storage in Bamboo-like CNTs by HRTEM. Journal of the Electrochemical Society, 2003, 150, A1281.	2.9	24

#	Article	IF	CITATIONS
127	Factors that affect activation energy for Li diffusion in LiFePO4: A first-principles investigation. Solid State Ionics, 2010, 181, 907-913.	2.7	24
128	Molten salt of lithium bis(fluorosulfonyl)imide (LiFSI)-potassium bis(fluorosulfonyl)imide (KFSI) as electrolyte for the natural graphite/LiFePO4 lithium-ion cell. Electrochimica Acta, 2014, 135, 217-223.	5.2	24
129	Improving the electrochemical cycling performance of anode materials via facile in situ surface deposition of a solid electrolyte layer. Journal of Power Sources, 2019, 424, 150-157.	7.8	24
130	Ag-deposited mesocarbon microbeads as an anode in a lithium ion battery with propylene carbonate electrolyte. Surface and Coatings Technology, 2004, 186, 412-415.	4.8	23
131	Preparation and characterization of LiNi0.5Mn1.5O4â [~] î [~] thin films taking advantage of correlations with powder samples behavior. Journal of Power Sources, 2013, 232, 165-172.	7.8	23
132	Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material. Nano Energy, 2022, 98, 107222.	16.0	23
133	Enhanced electrochemical performance of Si–Cu–Ti thin films by surface covered with Cu 3 Si nanowires. Journal of Power Sources, 2015, 281, 455-460.	7.8	22
134	Understanding the Effect of Atomic-Scale Surface Migration of Bridging lons in Binding Li3PO4 to the Surface of Spinel Cathode Materials. ACS Applied Materials & Interfaces, 2019, 11, 6937-6947.	8.0	21
135	Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts. Journal of Power Sources, 2022, 526, 231105.	7.8	20
136	Wearable Bipolar Rechargeable Aluminum Battery. , 2020, 2, 808-813.		19
137	Investigation of structure and cycling performance of Nb5+ doped high‑nickel ternary cathode materials. Solid State Ionics, 2021, 359, 115520.	2.7	19
138	Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective. Journal of Power Sources Advances, 2022, 14, 100088.	5.1	19
139	Anomalous Thermal Decomposition Behavior of Polycrystalline LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ in PEOâ€Based Solid Polymer Electrolyte. Advanced Functional Materials, 2022, 32, .	14.9	19
140	Triplite LiFeSO4F as cathode material for Li-ion batteries. Journal of Power Sources, 2013, 244, 716-720.	7.8	18
141	Lithium ion Conductor and Electronic Conductor Co-coating Modified Layered Cathode Material LiNi1/3Mn1/3Co1/3O2. Electrochimica Acta, 2017, 247, 443-450.	5.2	18
142	Improving the rate capability of a SiOx/graphite anode by adding LiNO3. Progress in Natural Science: Materials International, 2020, 30, 321-327.	4.4	18
143	Excellent low-temperature electrochemical cycling of an anode consisting of Si nanoparticles seeded in Sn nanowires for lithium-ion batteries. Electrochimica Acta, 2021, 396, 139224.	5.2	18
144	Si nanoparticles seeded in carbon-coated Sn nanowires as an anode for high-energy and high-rate lithium-ion batteries. Materials Futures, 2022, 1, 015101.	8.4	18

#	Article	IF	CITATIONS
145	New ionic liquids based on a super-delocalized perfluorinated sulfonimide anion: physical and electrochemical properties. Electrochimica Acta, 2016, 207, 66-75.	5.2	17
146	Ta ₂ O ₅ Coating as an HF Barrier for Improving the Electrochemical Cycling Performance of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ at Elevated Temperatures. ACS Applied Energy Materials, 0, , .	5.1	17
147	Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1,3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. Electrochimica Acta, 2020, 363, 137198.	5.2	17
148	Lithium fluorinated sulfonimide-based solid polymer electrolytes for Li LiFePO4 cell: The impact of anionic structure. Solid State Ionics, 2020, 358, 115519.	2.7	16
149	A new route to single crystalline vanadium dioxide nanoflakes via thermal reduction. Journal of Materials Research, 2007, 22, 1921-1926.	2.6	15
150	Amorphous Redox-Rich Polysulfides for Mg Cathodes. Jacs Au, 2021, 1, 1266-1274.	7.9	14
151	Reaction Mechanisms of Ta-Substituted Cubic Li ₇ La ₃ Zr ₂ O ₁₂ with Solvents During Storage. ACS Applied Materials & Interfaces, 2021, 13, 38384-38393.	8.0	14
152	Effects of the Nb ₂ O ₅ -Modulated Surface on the Electrochemical Properties of Spinel LiMn ₂ O ₄ Cathodes. ACS Applied Energy Materials, 2021, 4, 8350-8359.	5.1	14
153	Molten salt electrolyte based on alkali bis(fluorosulfonyl)imides for lithium batteries. Electrochimica Acta, 2013, 105, 524-529.	5.2	13
154	Alumina coated nano silicon synthesized by aluminothermic reduction as anodes for lithium ion batteries. Functional Materials Letters, 2017, 10, 1650073.	1.2	13
155	Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithiumâ€Rich Cathode Oxides. Angewandte Chemie, 2019, 131, 4367-4371.	2.0	13
156	Impact of Negative Charge Delocalization on the Properties of Solid Polymer Electrolytes. ChemElectroChem, 2021, 8, 1322-1328.	3.4	13
157	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie, 2021, 133, 17688-17696.	2.0	13
158	Electrochemical impedance spectroscopic study of the rate-determining step of Li ion intercalation and deintercalation in LixNiO2 cathodes. Ionics, 1996, 2, 259-265.	2.4	12
159	Simplifying and accelerating kinetics enabling fast-charge Al batteries. Journal of Materials Chemistry A, 2020, 8, 23834-23843.	10.3	12
160	Electronic Conductive Inorganic Cathodes Promising Highâ€Energy Organic Batteries. Advanced Materials, 2021, 33, e2005781.	21.0	12
161	Electrochemical properties and interfacial reactions of LiNi0.5Mn1.5O4â [~] î [~] nanorods. Progress in Natural Science: Materials International, 2012, 22, 207-212.	4.4	11
162	Research and Application of Information Model of a Lithium Ion Battery Intelligent Manufacturing Workshop Based on OPC UA. Batteries, 2020, 6, 52.	4.5	11

#	Article	IF	CITATIONS
163	Ultrathin Ta2O5-coated super P carbon black as a stable conducting additive for lithium batteries charged to 4.9Vat 55°C. Carbon, 2020, 162, 519-527.	10.3	11
164	Core–shell Si/Cu nanocomposites synthesized by self-limiting surface reaction as anodes for lithium ion batteries. Functional Materials Letters, 2017, 10, 1750025.	1.2	10
165	Unprecedented Impact of Main Chain on Comb Polymer Electrolytes Performances. ChemElectroChem, 2022, 9, .	3.4	9
166	Surface compatibility in a carbon–alloy composite and its influence on the electrochemical performance of Li/ion batteries. Carbon, 2004, 42, 1965-1972.	10.3	8
167	Carbon-Coated Li[sub 1.2]Cr[sub 0.4]Ti[sub 0.4]O[sub 2] Cathode Material for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2006, 9, A324.	2.2	8
168	A facile method to synthesize 3D structured Sn anode material with excellent electrochemical performance for lithium-ion batteries. Progress in Natural Science: Materials International, 2020, 30, 456-460.	4.4	8
169	Electrolyzed Ni(OH) ₂ Precursor Sintered with LiOH/LiNiO ₃ Mixed Salt for Structurally and Electrochemically Stable Cobalt-Free LiNiO ₂ Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 50965-50974.	8.0	8
170	Activation of LiMnBO glass as cathode material for lithium-ion batteries. Journal of Materials Chemistry, 2000, 10, 1465-1467.	6.7	7
171	Inhibition of lithium dendrite growth by forming rich polyethylene oxide-like species in a solid-electrolyte interphase in a polysulfide/carbonate electrolyte. Journal of Materials Chemistry A, 2018, 6, 16818-16823.	10.3	7
172	All-in-One Ionic–Electronic Dual-Carrier Conducting Framework Thickening All-Solid-State Electrode. ACS Energy Letters, 2022, 7, 766-772.	17.4	7
173	Electroactive-catalytic conductive framework for aluminum-sulfur batteries. Energy Storage Materials, 2022, 51, 266-272.	18.0	7
174	Electrochemical and structural studies of the carbon-coated Li[CrxLi(1/3â^'x/3)Ti(2/3â^'2x/3)]O2 (x=0.3,) Tj ETQq(0 0 0 rgBT 7.8	Qverlock 1
175	Raman Spectroscopic Investigation of the Dissociation of Dimethylsulphoxide Induced by Polyacrylonitrile. Journal of Raman Spectroscopy, 1996, 27, 901-906.	2.5	5
176	Crystallization mechanism in amorphous material of 0.5LiMnO2-0.5B2O3. Journal of Materials Science, 2000, 35, 1695-1698.	3.7	5
177	Alkali″on Storage Behaviour in Spinel Lithium Titanate Electrodes. ChemElectroChem, 2015, 2, 1678-1681.	3.4	5
178	A designed core-shell structural composite of lithium terephthalate coating on Li4Ti5O12 as anode for lithium ion batteries. Progress in Natural Science: Materials International, 2016, 26, 368-374.	4.4	5
179	Li[(FSO 2)(n 4 F 9 SO 2)N]: A Difunctional Salt for Ethyleneâ€Carbonate―and Additiveâ€Free Electrolyte for Liâ€Ion Cells. ChemElectroChem, 2021, 8, 1807-1816.	3.4	4
180	Study on Influencing Factors of Consistency in Manufacturing Process of Vehicle Lithiumâ€ion Battery BasedÂon Correlation Coefficient and Multivariate Linear Regression Model. Advanced Theory and Simulations, 2021, 4, 2100070.	2.8	4

#	Article	IF	CITATIONS
181	SPECTROSCOPIC STUDIES OF SOLID-ELECTROLYTE INTERPHASE ON POSITIVE AND NEGATIVE ELECTRODES FOR LITHIUM ION BATTERIES. , 2004, , 140-197.		2
182	Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 8370-8377.	2.0	2
183	Binding Li 3 PO 4 to Spinel LiNi 0.5 Mn 1.5 O 4 via a Surface Co ontaining Bridging Layer to Improve the Electrochemical Performance. Energy Technology, 2021, 9, 2100147.	3.8	1
184	Nanosized alloy-based anode materials for Li ion batteries. , 2000, , .		1
185	Polymer-in-salt electrolytes based on PAN-LiTFSI. , 2000, , .		0
186	Preparation of superionic conductor AgI nano-wires in alumina template by Electrochemical dual liquor deposition (EDLD). , 2000, , .		0
187	Anomalous Conductivity of Glassy Li ₂ O :4 MnO _{2-x} :4 B _{2During Heat Treatment. , 2000, , .}	ub> <fon< td=""><td>c>Œ/font>≪</td></fon<>	c>Œ/font>≪
188	Modification of Spinel LiMn ₂ O ₄ Using an Electrochemical Method. , 2000, , .		0
189	Improve Cycling Performance of Spinel LiMn ₂ O ₄ by Cation Doping. , 2000, , .		0
190	Raman Spectral Studies on Solid State Interphase in Li Batteries. , 2000, , .		0
191	Electronic conductivity of La0.9Sr0.1InO3-δ. , 2000, , .		0
192	Preparation of Microporous Membranes for Lithium ion battery. , 2000, , .		0
193	Electrochemical performance of Ni -deposited graphite anodes for lithium secondary batteries. , 2000, , .		0
194	Sol-Gel Synthesis and Properties of Sr -Doped LaInO ₃ Perovskite Oxide. , 2000, , .		0