
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4310075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling of Formation of Gold Nanoparticles by Citrate Methodâ€. Industrial & Engineering Chemistry Research, 2007, 46, 3128-3136.	3.7	306
2	Title is missing!. Journal of Applied Electrochemistry, 2001, 31, 373-378.	2.9	164
3	Modelling of a batch sonochemical reactor. Chemical Engineering Science, 1994, 49, 877-888.	3.8	127
4	Breakage of viscous and non-Newtonian drops in stirred dispersions. Chemical Engineering Science, 1986, 41, 65-72.	3.8	120
5	A new model for the breakage frequency of drops in turbulent stirred dispersions. Chemical Engineering Science, 1992, 47, 2989-3002.	3.8	65
6	Alternative mechanisms of drop breakage in stirred vessels. Chemical Engineering Science, 1991, 46, 2483-2489.	3.8	62
7	Simulation of Precipitation Reactions in Reverse Micelles. Langmuir, 2000, 16, 7139-7149.	3.5	62
8	Modeling of Precipitation in Reverse Micellar Systems. Langmuir, 1997, 13, 3610-3620.	3.5	58
9	Effect of simultaneous polyaddition reaction on the curing of epoxides. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18, 857-870.	0.8	56
10	Calorimetric and other interaction studies on mineral—starch adsorption systems. Colloids and Surfaces, 1984, 8, 321-336.	0.9	52
11	Role of cell attachment in leaching of chalcopyrite mineral by Thiobacillus ferrooxidans. Applied Microbiology and Biotechnology, 1991, 36, 278-282.	3.6	52
12	Modelling of CaCO3Nanoparticle Formation During Overbasing of Lubricating Oil Additives. Langmuir, 2001, 17, 1015-1029.	3.5	52
13	Water blown free rise polyurethane foams. Polymer Engineering and Science, 1999, 39, 199-209.	3.1	50
14	A new model for coalescence efficiency of drops in stirred dispersions. Chemical Engineering Science, 1993, 48, 2025-2038.	3.8	47
15	A model for static foam drainage. Chemical Engineering Science, 1993, 48, 455-465.	3.8	46
16	Alternative mechanisms of drop breakup in stirred vessels. Chemical Engineering Science, 1998, 53, 3269-3280.	3.8	40
17	Kinetics of step polymerization with unequal reactivities. AICHE Journal, 1979, 25, 266-272.	3.6	37
18	Prediction of separation factor in foam separation of proteins. Chemical Engineering Science, 1997, 52, 4625-4636.	3.8	36

#	Article	IF	CITATIONS
19	Dissolution of sulphur particles byThiobacillus ferrooxidans: Substrate for unattached cells. Biotechnology and Bioengineering, 1993, 41, 612-616.	3.3	35
20	Some Basic Aspects of Reaction Engineering of Precipitation Processes. Industrial & Engineering Chemistry Research, 1995, 34, 3223-3230.	3.7	35
21	Modelling of sonochemical oxidation of the water-KI-CCl4 system. Chemical Engineering Science, 1998, 53, 255-271.	3.8	35
22	Direct methanol fuel cells for vehicular applications. Journal of Solid State Electrochemistry, 1998, 2, 117-122.	2.5	33
23	Influence of the wetting characteristics of the impeller on phase inversion. Chemical Engineering Science, 1991, 46, 2365-2367.	3.8	32
24	Ion Exchange in Reverse Micelles. Langmuir, 2005, 21, 767-778.	3.5	32
25	A multi-stage model for drop breakage in stirred vessels. Chemical Engineering Science, 1992, 47, 971-980.	3.8	27
26	Modeling of Sonochemical Decomposition of CCl4 in Aqueous Solutions. Environmental Science & Technology, 1998, 32, 1128-1133.	10.0	26
27	A 5 W liquid-feed solid-polymer-electrolyte direct methanol fuel cell stack with stainless steel. Journal of Applied Electrochemistry, 1999, 29, 129-132.	2.9	26
28	Modeling of bubble-size distribution in free rise polyurethane foams. AICHE Journal, 1992, 38, 1170-1184.	3.6	25
29	A new model for drainage of static foams. Chemical Engineering Science, 1996, 51, 1393-1403.	3.8	25
30	Theory of Rate of Solubilization into Surfactant Solutions. Langmuir, 2003, 19, 4014-4026.	3.5	24
31	MODELING OF HYDROLYTIC POLYMERIZATION IN A SEMIBATCH NYLON 6 REACTOR. Chemical Engineering Communications, 1992, 113, 63-89.	2.6	22
32	A Network Model of Static Foam Drainage. Langmuir, 1995, 11, 1381-1391.	3.5	21
33	Modelling of protein mixture separation in a batch foam column. Chemical Engineering Science, 2001, 56, 5499-5510.	3.8	20
34	Studies on the thickening reaction of polyester resins employed in sheet molding compounds. Journal of Polymer Science: Polymer Chemistry Edition, 1976, 14, 793-811.	0.8	19
35	Sonochemical reaction engineering. Sadhana - Academy Proceedings in Engineering Sciences, 1994, 19, 1055-1076.	1.3	18
36	Effect of solvent character on polymer entanglements. Journal of Applied Polymer Science, 1972, 16, 2721-2725.	2.6	15

#	Article	IF	CITATIONS
37	Molecular weight distributions in epoxy resins. Journal of Applied Polymer Science, 1979, 24, 1115-1123.	2.6	15
38	Step Polymerization with Unequal Reactivities of Functional Groups. Macromolecules, 1980, 13, 791-797.	4.8	15
39	Breakage of a drop of inviscid fluid due to a pressure fluctuation at its surface. Journal of Fluid Mechanics, 1996, 328, 1-17.	3.4	15
40	Modeling of Effect of Double-Layer Capacitance and Failure of Lead-Acid Batteries in HRPSoC Application. Journal of the Electrochemical Society, 2017, 164, E3092-E3101.	2.9	15
41	Breakage of viscoelastic drops in turbulent stirred dispersions. Chemical Engineering Science, 1988, 43, 2625-2631.	3.8	14
42	Precipitation in small systems-I. stochastic analysis. Chemical Engineering Science, 1994, 49, 1451-1463.	3.8	14
43	A two-zone model of breakage frequency of drops in stirred dispersions. Chemical Engineering Science, 1994, 49, 2194-2198.	3.8	14
44	Effect of drag-reducing agents on drop breakage in stirred dispersions. Chemical Engineering Science, 1989, 44, 2113-2120.	3.8	12
45	Breakage and coalescence of drops in turbulent stirred dispersions. Sadhana - Academy Proceedings in Engineering Sciences, 1990, 15, 73-103.	1.3	11
46	Use of Fick's law and Maxwell–Stefan equations in computation of multicomponent diffusion. AICHE Journal, 2012, 58, 3601-3605.	3.6	11
47	Permeation of gases through liquid films. Chemical Engineering Science, 1988, 43, 1261-1268.	3.8	10
48	Simplified Mathematical Model for Effects of Freezing on the Low-Temperature Performance of the Lead-Acid Battery. Journal of the Electrochemical Society, 2009, 156, A238.	2.9	10
49	Role of electrical resistance of electrodes in modeling of discharging and charging of flooded lead-acid batteries. Journal of Power Sources, 2015, 277, 124-130.	7.8	10
50	A theory for the enhancement of the photoacoustic signals by volatile liquids. Applied Physics B, Photophysics and Laser Chemistry, 1987, 43, 35-41.	1.5	9
51	Molecular weight distribution in batch hydrolytic polymerization of caprolactam. Journal of Applied Polymer Science, 1982, 27, 1099-1104.	2.6	8
52	Analysis of ultrasonically enhanced hydrogen evolution for Zn-NiCl2 system. Chemical Engineering Science, 1995, 50, 2409-2418.	3.8	8
53	Modeling of bubbleâ€size distribution in water and freon coâ€blown free rise polyurethane foams. Journal of Applied Polymer Science, 2014, 131, .	2.6	8
54	Step polymerisation with unequal reactivities in a CSTR. Chemical Engineering Science, 1980, 35, 955-962.	3.8	7

#	Article	IF	CITATIONS
55	Modeling of backmixing in continuous polymerization of caprolactam in VK column reactors. Industrial & Engineering Chemistry Product Research and Development, 1985, 24, 327-333.	0.5	7
56	An elongational flow model for drop breakage in stirred turbulent dispersions. Chemical Engineering Science, 1990, 45, 2998-3003.	3.8	6
57	A simplified procedure for predicting dmax in stirred vessels. Chemical Engineering Science, 1993, 48, 3092-3096.	3.8	6
58	Strategy for Obtaining Bimodal Bubble Size Distribution in Water Blown Polyurethane Foams. Industrial & Engineering Chemistry Research, 2015, 54, 10520-10529.	3.7	6
59	Analysis of products of the thickening reaction between polyesters and magnesium oxide. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23, 2305-2317.	0.8	5
60	Precipitation in small systems—II. Mean field equations more effective than population balance. Chemical Engineering Science, 1996, 51, 4423-4436.	3.8	5
61	A model for thermal collapse of tubes: Application to optical glass fibres. Chemical Engineering Science, 1986, 41, 73-81.	3.8	4
62	Mass transfer accompanied by a chemical reaction in an emulsion foam bed reactor. AICHE Journal, 1987, 33, 331-335.	3.6	4
63	Drainage and separation factors for static foams containing agglomerates of microbial cells. Chemical Engineering Science, 1993, 48, 1819-1831.	3.8	4
64	Enhancing the Hydrophobic Effect in Confined Water Nanodrops. Langmuir, 2007, 23, 12795-12798.	3.5	4
65	Detachment of a coalesced-phase blod from a circular obstacle in a Hele-Shaw cell. Chemical Engineering Science, 1997, 52, 2849-2855.	3.8	3
66	Modeling of Effect of Nucleation Rate and Electrodes' Resistance on Discharge Characteristics of Lead-Acid Batteries. Journal of the Electrochemical Society, 2015, 162, A1506-A1515.	2.9	3
67	Solvent effect on the time constant of concentrated polymer solutions. Journal of Applied Polymer Science, 1975, 19, 1663-1676.	2.6	2
68	Effects of unequal reactivity of functional groups on gelation phenomena in polyurethane systems. Polymer, 1985, 26, 595-607.	3.8	1
69	Desorption from concentrated polymer solutions in good and poor solvents. Industrial & Engineering Chemistry Research, 1993, 32, 2069-2076.	3.7	1
70	Modeling of Freezing Phenomena Induced by Chemical Reactions. Industrial & Engineering Chemistry Research, 2009, 48, 9755-9762.	3.7	1
71	Flow of Liquid/Liquid Dispersions in a Hele-Shaw Cell Journal of Chemical Engineering of Japan, 1997, 30, 852-866.	0.6	0