Alexandre Puissant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4309930/publications.pdf Version: 2024-02-01

ALEYANDRE PHISSANT

#	Article	IF	CITATIONS
1	Targeting serine hydroxymethyltransferases 1 and 2 for T-cell acute lymphoblastic leukemia therapy. Leukemia, 2022, 36, 348-360.	7.2	23
2	Endothelial cells: major players in acute myeloid leukaemia. Blood Reviews, 2022, 54, 100932.	5.7	9
3	Screening of ETO2-GLIS2–induced Super Enhancers identifies targetable cooperative dependencies in acute megakaryoblastic leukemia. Science Advances, 2022, 8, eabg9455.	10.3	9
4	Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia, 2022, 36, 1585-1595.	7.2	24
5	Tumor Lysis Syndrome and AKI: Beyond Crystal Mechanisms. Journal of the American Society of Nephrology: JASN, 2022, 33, 1154-1171.	6.1	18
6	P2RY2-AKT activation is a therapeutically actionable consequence of XPO1 inhibition in acute myeloid leukemia. Nature Cancer, 2022, 3, 837-851.	13.2	9
7	A multiparametric niche-like drug screening platform in acute myeloid leukemia. Blood Cancer Journal, 2022, 12, .	6.2	6
8	Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A Report from the LEAP Consortium. Cancer Discovery, 2021, 11, 1424-1439.	9.4	16
9	Targeting acute myeloid leukemia dependency on VCP-mediated DNA repair through a selective second-generation small-molecule inhibitor. Science Translational Medicine, 2021, 13, .	12.4	29
10	Drug Resistance in Hematological Malignancies. International Journal of Molecular Sciences, 2020, 21, 6091.	4.1	21
11	The Folate Cycle Enzyme MTHFR Is a Critical Regulator of Cell Response to MYC-Targeting Therapies. Cancer Discovery, 2020, 10, 1894-1911.	9.4	13
12	Using antagonistic pleiotropy to design a chemotherapy-induced evolutionary trap to target drug resistance in cancer. Nature Genetics, 2020, 52, 408-417.	21.4	47
13	Niche-like Ex Vivo High Throughput (NEXT) Drug Screening Platform in Acute Myeloid Leukemia. Blood, 2020, 136, 12-13.	1.4	4
14	CDK6 is an essential direct target of NUP98 fusion proteins in acute myeloid leukemia. Blood, 2020, 136, 387-400.	1.4	46
15	Trials in Progress: A Phase I Study to Evaluate the Safety and Pharmacokinetic Profiles of CB-5339 in Participants with Relapsed/Refractory Acute Myeloid Leukemia or Relapsed/Refractory Intermediate or High-Risk Myelodysplastic Syndrome. Blood, 2020, 136, 21-21.	1.4	1
16	BET inhibitors impair leukemic stem cell function only in defined oncogenic subgroups of acute myeloid leukaemias. Leukemia Research, 2019, 87, 106269.	0.8	9
17	Creatine kinase pathway inhibition alters GSK3 and WNT signaling in EVI1-positive AML. Leukemia, 2019, 33, 800-804.	7.2	10
18	The Folate Cycle Enzyme MTHFR Is a Critical Regulator of Cell Response to MYC-Targeting Therapies. Blood, 2019, 134, 877-877.	1.4	1

#	Article	IF	CITATIONS
19	Exploiting an Asp-Glu "switch―in glycogen synthase kinase 3 to design paralog-selective inhibitors for use in acute myeloid leukemia. Science Translational Medicine, 2018, 10, .	12.4	69
20	Granulomonocytic progenitors are key target cells of azacytidine in higher risk myelodysplastic syndromes and acute myeloid leukemia. Leukemia, 2018, 32, 1856-1860.	7.2	7
21	HER2 Signaling Hijacks the Creatine Shuttle to Fuel Breast Cancer Cell Growth. Cell Metabolism, 2018, 28, 805-807.	16.2	8
22	The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia. Nature Medicine, 2017, 23, 301-313.	30.7	79
23	Autophagy, a key mechanism of oncogenesis and resistance in leukemia. Blood, 2017, 129, 547-552.	1.4	121
24	Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase. Oncotarget, 2017, 8, 52026-52044.	1.8	19
25	Vcp-Regulated Homologous Recombination Represents a New Druggable Vulnerability in Acute Myeloid Leukemia. Blood, 2017, 130, 880-880.	1.4	0
26	BCL-B (BCL2L10) is overexpressed in patients suffering from multiple myeloma (MM) and drives an MM-like disease in transgenic mice. Journal of Experimental Medicine, 2016, 213, 1705-1722.	8.5	24
27	Targeting MTHFD2 in acute myeloid leukemia. Journal of Experimental Medicine, 2016, 213, 1285-1306.	8.5	118
28	Aberrant activation of the PI3K/mTOR pathway promotes resistance to sorafenib in AML. Oncogene, 2016, 35, 5119-5131.	5.9	96
29	Targeting MTHFD2 in acute myeloid leukemia. Journal of Cell Biology, 2016, 214, 21410IA135.	5.2	0
30	Targeting the Creatine Kinase Pathway in EVI1-Positive Acute Myeloid Leukemia. Blood, 2016, 128, 523-523.	1.4	0
31	Autophagy and blood diseases. Hematologie, 2015, 21, 107-116.	0.0	0
32	Increased SYK activity is associated with unfavorable outcome among patients with acute myeloid leukemia. Oncotarget, 2015, 6, 25575-25587.	1.8	20
33	Involvement of autophagy in cellular development and differentiation. Hematologie, 2015, 21, 212-220.	0.0	0
34	Targeting MTHFD2 in Acute Myeloid Leukemia. Blood, 2015, 126, 443-443.	1.4	2
35	Aberrant Activation of the PI3K/mTOR Pathway Promotes Resistance to Sorafenib in AML. Blood, 2015, 126, 2472-2472.	1.4	0
36	Identification of CKMT1B As a New Target in EVI1-Positive AML. Blood, 2015, 126, 3674-3674.	1.4	0

#	Article	IF	CITATIONS
37	Implication of the Anti-Apoptotic Protein Bcl-B (BCL2L10) in the Pathogenesis of Multiple Myeloma. Blood, 2015, 126, 2958-2958.	1.4	Ο
38	A new posttranslational regulation of REDD1/DDIT4 through cleavage by caspase 3 modifies its cellular function. Cell Death and Disease, 2014, 5, e1349-e1349.	6.3	5
39	SYK Is a Critical Regulator of FLT3 in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 226-242.	16.8	126
40	MUC1-C oncoprotein promotes FLT3 receptor activation in acute myeloid leukemia cells. Blood, 2014, 123, 734-742.	1.4	16
41	The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells. Oncotarget, 2014, 5, 6252-6266.	1.8	43
42	Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death. Cell Death and Differentiation, 2013, 20, 611-619.	11.2	137
43	InÂVivo RNAi Screening Identifies a Leukemia-Specific Dependence on Integrin Beta 3 Signaling. Cancer Cell, 2013, 24, 45-58.	16.8	144
44	Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition. Cancer Discovery, 2013, 3, 308-323.	9.4	549
45	Tumor suppressor function of miR-483-3p on squamous cell carcinomas due to its pro-apoptotic properties. Cell Cycle, 2013, 12, 2183-2193.	2.6	52
46	SYK regulates mTOR signaling in AML. Leukemia, 2013, 27, 2118-2128.	7.2	44
47	Targeting Folate Metabolism In Acute Myelogenous Leukemia. Blood, 2013, 122, 3798-3798.	1.4	1
48	Imatinib triggers mesenchymal-like conversion of CML cells associated with increased aggressiveness. Journal of Molecular Cell Biology, 2012, 4, 207-220.	3.3	32
49	The anti-apoptotic Bcl-B protein inhibits BECN1-dependent autophagic cell death. Autophagy, 2012, 8, 637-649.	9.1	45
50	Ultrasound-assisted one-pot synthesis of anti-CML nucleosides featuring 1,2,3-triazole nucleobase under iron-copper catalysis. Ultrasonics Sonochemistry, 2012, 19, 1132-1138.	8.2	56
51	The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia, 2012, 26, 1195-1202.	7.2	138
52	BCL2L10 is a predictive factor for resistance to Azacitidine in MDS and AML patients. Oncotarget, 2012, 3, 490-501.	1.8	75
53	All tyrosine kinase inhibitor-resistant chronic myelogenous cells are highly sensitive to Ponatinib. Oncotarget, 2012, 3, 1557-1565.	1.8	30
54	The caspase 6 derived N-terminal fragment of DJ-1 promotes apoptosis via increased ROS production. Cell Death and Differentiation, 2012, 19, 1769-1778.	11.2	19

#	Article	IF	CITATIONS
55	BCL2L10 (Bcl-B) Is Associated with Resistance to Azacitidine (AZA) in MDS and AML, and Is a Possible Therapeutic Target in AZA Resistant Patients. Blood, 2012, 120, 701-701.	1.4	2
56	When autophagy meets cancer through p62/SQSTM1. American Journal of Cancer Research, 2012, 2, 397-413.	1.4	139
57	Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death and Disease, 2011, 2, e199-e199.	6.3	250
58	The p53/p21 ^{Cip1/ Waf1} pathway mediates the effects of SPARC on melanoma cell cycle progression. Pigment Cell and Melanoma Research, 2011, 24, 219-232.	3.3	36
59	SPARC functions as an anti-stress factor by inactivating p53 through Akt-mediated MDM2 phosphorylation to promote melanoma cell survival. Oncogene, 2011, 30, 4887-4900.	5.9	60
60	Azacitidine-resistant SKM1 myeloid cells are defective for AZA-induced mitochondrial apoptosis and autophagy. Cell Cycle, 2011, 10, 2339-2343.	2.6	37
61	Ciglitazone negatively regulates CXCL1 signaling through MITF to suppress melanoma growth. Cell Death and Differentiation, 2011, 18, 109-121.	11.2	31
62	Structure elucidation of the new citharoxazole from the Mediterranean deepâ€sea sponge <i>Latrunculia (Biannulata) citharistae</i> . Magnetic Resonance in Chemistry, 2011, 49, 533-536.	1.9	13
63	Mechanism of action of the multikinase inhibitor Foretinib. Cell Cycle, 2011, 10, 4138-4148.	2.6	28
64	In Vivo RNA Interference Screening Identifies a Leukemia-Specific Dependence on Integrin Beta 3 Signaling. Blood, 2011, 118, 758-758.	1.4	0
65	Cathepsin B release after imatinib-mediated lysosomal membrane permeabilization triggers BCR–ABL cleavage and elimination of chronic myelogenous leukemia cells. Leukemia, 2010, 24, 115-124.	7.2	43
66	Targeting lysosomes to eradicate imatinib-resistant chronic myelogenous leukemia cells. Leukemia, 2010, 24, 1099-1101.	7.2	17
67	Resveratrol Promotes Autophagic Cell Death in Chronic Myelogenous Leukemia Cells via JNK-Mediated p62/SQSTM1 Expression and AMPK Activation. Cancer Research, 2010, 70, 1042-1052.	0.9	335
68	Persistent Activation of the Fyn/ERK Kinase Signaling Axis Mediates Imatinib Resistance in Chronic Myelogenous Leukemia Cells through Upregulation of Intracellular SPARC. Cancer Research, 2010, 70, 9659-9670.	0.9	56
69	AMPK- and p62/SQSTM1-dependent autophagy mediate Resveratrol-induced cell death in chronic myelogenous leukemia. Autophagy, 2010, 6, 655-657.	9.1	63
70	Targeting autophagy to fight hematopoietic malignancies. Cell Cycle, 2010, 9, 3470-3478.	2.6	70
71	Induction of Autophagic Cell Death Circumvents Azacitidine-Resistance In Myelodysplastic Syndrome-Derived Cell Lines. Blood, 2010, 116, 1817-1817.	1.4	1
72	Gene expression profiling of imatinib and PD166326-resistant CML cell lines identifies Fyn as a gene associated with resistance to BCR-ABL inhibitors. Molecular Cancer Therapeutics, 2009, 8, 1924-1933.	4.1	71

#	Article	IF	CITATIONS
73	Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy, 2009, 5, 1092-1098.	9.1	92
74	In Vitro and In Vivo Anti-Melanoma Effects of Ciglitazone. Journal of Investigative Dermatology, 2009, 129, 1208-1218.	0.7	51
75	Inhibition of imatinib-mediated apoptosis by the caspase-cleaved form of the tyrosine kinase Lyn in chronic myelogenous leukemia cells. Leukemia, 2009, 23, 1500-1506.	7.2	23
76	Dual Role of Sp3 Transcription Factor as an Inducer of Apoptosis and a Marker of Tumour Aggressiveness. PLoS ONE, 2009, 4, e4478.	2.5	29
77	Acadesine Kills Chronic Myelogenous Leukemia (CML) Cells through PKC-Dependent Induction of Autophagic Cell Death. PLoS ONE, 2009, 4, e7889.	2.5	79
78	Imatinib mesylateâ€resistant human chronic myelogenous leukemia cell lines exhibit high sensitivity to the phytoalexin resveratrol. FASEB Journal, 2008, 22, 1894-1904.	0.5	59
79	Apoptosis and erythroid differentiation triggered by Bcr-Abl inhibitors in CML cell lines are fully distinguishable processes that exhibit different sensitivity to caspase inhibition. Oncogene, 2007, 26, 2445-2458	5.9	45