Yohannes Tesfaigzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4309756/publications.pdf

Version: 2024-02-01

96 papers 5,496 citations

34 h-index 71 g-index

99 all docs 99 docs citations 99 times ranked 8239 citing authors

#	Article	IF	CITATIONS
1	Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 2015, 373, 111-122.	13.9	974
2	How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer?. Cell Cycle, 2009, 8 , $1168-1175$.	1.3	804
3	<i>MMP12,</i> Lung Function, and COPD in High-Risk Populations. New England Journal of Medicine, 2009, 361, 2599-2608.	13.9	315
4	Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nature Genetics, 2017, 49, 426-432.	9.4	306
5	Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nature Genetics, 2019, 51, 494-505.	9.4	257
6	Wood Smoke Exposure and Gene Promoter Methylation Are Associated with Increased Risk for COPD in Smokers. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1098-1104.	2.5	117
7	Protective role for club cell secretory protein-16 (CC16) in the development of COPD. European Respiratory Journal, 2015, 45, 1544-1556.	3.1	115
8	Association of clonal hematopoiesis with chronic obstructive pulmonary disease. Blood, 2022, 139, 357-368.	0.6	106
9	Molecular Processes that Drive Cigarette Smoke–Induced Epithelial Cell Fate of the Lung. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 471-482.	1.4	88
10	Health Effects of Subchronic Exposure to Low Levels of Wood Smoke in Rats. Toxicological Sciences, 2002, 65, 115-125.	1.4	86
11	Nicotine Primarily Suppresses Lung Th2 but Not Goblet Cell and Muscle Cell Responses to Allergens. Journal of Immunology, 2008, 180, 7655-7663.	0.4	83
12	ERS/ATS workshop report on respiratory health effects of household air pollution. European Respiratory Journal, 2018, 51, 1700698.	3.1	81
13	Roles of Apoptosis in Airway Epithelia. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 537-547.	1.4	75
14	New Mexican Hispanic Smokers Have Lower Odds of Chronic Obstructive Pulmonary Disease and Less Decline in Lung Function Than Non-Hispanic Whites. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1254-1260.	2.5	71
15	A Pilot Study Linking Endothelial Injury in Lungs and Kidneys in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1464-1476.	2.5	67
16	Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax, 2017, 72, 998-1006.	2.7	65
17	Rapid Lung Function Decline in Smokers Is a Risk Factor for COPD and Is Attenuated by Angiotensin-Converting Enzyme Inhibitor Use. Chest, 2014, 145, 695-703.	0.4	60
18	Club Cell Protein 16 (CC16) Augmentation: A Potential Disease-modifying Approach for Chronic Obstructive Pulmonary Disease (COPD). Expert Opinion on Therapeutic Targets, 2016, 20, 869-883.	1.5	60

#	Article	IF	Citations
19	CCSP modulates airway dysfunction and host responses in an Ova-challenged mouse model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1303-L1311.	1.3	54
20	IFN- \hat{I}^3 , But Not Fas, Mediates Reduction of Allergen-Induced Mucous Cell Metaplasia by Inducing Apoptosis. Journal of Immunology, 2002, 168, 4764-4771.	0.4	52
21	Bcl-2 Sustains Increased Mucous and Epithelial Cell Numbers in Metaplastic Airway Epithelium. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 764-772.	2.5	52
22	Bcl-2 in LPS- and allergen-induced hyperplastic mucous cells in airway epithelia of Brown Norway rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L1210-L1217.	1.3	50
23	Metformin: Experimental and Clinical Evidence for a Potential Role in Emphysema Treatment. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 651-666.	2.5	49
24	Effects of 10 Cigarette Smoke Condensates on Primary Human Airway Epithelial Cells by Comparative Gene and Cytokine Expression Studies. Toxicological Sciences, 2010, 114, 79-89.	1.4	48
25	The BH3-only protein Bik/Blk/Nbk inhibits nuclear translocation of activated ERK1/2 to mediate IFN \hat{l}^3 -induced cell death. Journal of Cell Biology, 2008, 183, 429-439.	2.3	47
26	Decreased sphingolipid synthesis in children with 17q21 asthma–risk genotypes. Journal of Clinical Investigation, 2020, 130, 921-926.	3.9	47
27	Cigarette Smoke Suppresses Bik To Cause Epithelial Cell Hyperplasia and Mucous Cell Metaplasia. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1531-1538.	2.5	43
28	Opportunities and Challenges in the Genetics of COPD 2010: An International COPD Genetics Conference Report. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2011, 8, 121-135.	0.7	43
29	Mononuclear Phagocytes and Airway Epithelial Cells: Novel Sources of Matrix Metalloproteinase-8 (MMP-8) in Patients with Idiopathic Pulmonary Fibrosis. PLoS ONE, 2014, 9, e97485.	1.1	42
30	Low-Level Subchronic Exposure to Wood Smoke Exacerbates Inflammatory Responses in Allergic Rats. Toxicological Sciences, 2005, 88, 505-513.	1.4	40
31	Deacetylation of p53 induces autophagy by suppressing Bmf expression. Journal of Cell Biology, 2013, 201, 427-437.	2.3	40
32	Wood Smoke Enhances Cigarette Smoke–Induced Inflammation by Inducing the Aryl Hydrocarbon Receptor Repressor in Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 377-386.	1.4	39
33	Epigenetic Repression of CCDC37 and MAP1B Links Chronic Obstructive Pulmonary Disease to Lung Cancer. Journal of Thoracic Oncology, 2015, 10, 1181-1188.	0.5	38
34	Spirometric variability in smokers: transitions in COPD diagnosis in a five-year longitudinal study. Respiratory Research, 2016, 17, 147.	1.4	36
35	DNA synthesis and Bcl-2 expression during development of mucous cell metaplasia in airway epithelium of rats exposed to LPS. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L268-L274.	1.3	35
36	Methylated Genes in Sputum Among Older Smokers With Asthma. Chest, 2012, 142, 425-431.	0.4	35

#	Article	IF	Citations
37	Bax is Crucial for IFN- \hat{I}^3 -Induced Resolution of Allergen- Induced Mucus Cell Metaplasia. Journal of Immunology, 2002, 169, 5919-5925.	0.4	34
38	STAT1 Activation Causes Translocation of Bax to the Endoplasmic Reticulum during the Resolution of Airway Mucous Cell Hyperplasia by IFN- \hat{I}^3 . Journal of Immunology, 2007, 178, 8107-8116.	0.4	34
39	Regulation of Mucous Cell Metaplasia in Bronchial Asthma. Current Molecular Medicine, 2008, 8, 408-415.	0.6	34
40	Adam8 Limits the Development of Allergic Airway Inflammation in Mice. Journal of Immunology, 2013, 190, 6434-6449.	0.4	33
41	A Novel Nonhuman Primate Model of Cigarette Smoke–Induced Airway Disease. American Journal of Pathology, 2015, 185, 741-755.	1.9	31
42	A Disintegrin and Metalloproteinase Domain-8: A Novel Protective Proteinase in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1254-1267.	2.5	31
43	Chronic Bronchitis Is Associated With Worse Symptoms and Quality of Life Than Chronic Airflow Obstruction. Chest, 2015, 148, 408-416.	0.4	30
44	IL-17 Plays a Role in Respiratory Syncytial Virus–induced Lung Inflammation and Emphysema in Elastase and LPS-injured Mice. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 717-726.	1.4	30
45	Bcl-2 mediates sex-specific differences in recovery of mice from LPS-induced signs of sickness independent of IL-6. Journal of Applied Physiology, 2001, 91, 2182-2189.	1.2	25
46	Resolution of LPS-induced airway inflammation and goblet cell hyperplasia is independent of IL-18. Respiratory Research, 2007, 8, 24.	1.4	25
47	Genotypes in matrix metalloproteinase 9 are a risk factor for COPD. International Journal of COPD, 2006, 1, 267-278.	0.9	25
48	Acute Inflammation Induces Insulin-like Growth Factor-1 to Mediate Bcl-2 and Muc5ac Expression in Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 784-791.	1.4	24
49	Difference in Airflow Obstruction between Hispanic and Non-Hispanic White Female Smokers. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2008, 5, 274-281.	0.7	23
50	Intracellular Insulin-like Growth Factor-1 Induces Bcl-2 Expression in Airway Epithelial Cells. Journal of Immunology, 2012, 188, 4581-4589.	0.4	23
51	A genetic variant of p53 restricts the mucous secretory phenotype by regulating SPDEF and Bcl-2 expression. Nature Communications, 2014, 5, 5567.	5.8	23
52	Increased methylation of lung cancer-associated genes in sputum DNA of former smokers with chronic mucous hypersecretion. Respiratory Research, 2014, 15, 2.	1.4	23
53	Identification of a novel Bcl-2 promoter region that counteracts in a p53-dependent manner the inhibitory P2 region. Gene, 2007, 404, 110-116.	1.0	22
54	Antioxidant Diet Protects Against Emphysema, but Increases Mortality in Cigarette Smoke-Exposed Mice. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2011, 8, 362-368.	0.7	22

#	Article	IF	Citations
55	Genetic Determinants for Promoter Hypermethylation in the Lungs of Smokers: A Candidate Gene-Based Study. Cancer Research, 2012, 72, 707-715.	0.4	22
56	IL-9 and IL-13 Induce Mucous Cell Metaplasia That Is Reduced by IFN-γ in a Bax-Mediated Pathway. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 310-317.	1.4	21
57	Bik reduces hyperplastic cells by increasing Bak and activating DAPk1 to juxtapose ER and mitochondria. Nature Communications, 2017, 8, 803.	5.8	21
58	The Course of Lung Function in Middle-aged Heavy Smokers: Incidence and Time to Early Onset of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1449-1451.	2.5	20
59	Tissue Inhibitor of Metalloproteinase-1 Promotes Polymorphonuclear Neutrophil (PMN) Pericellular Proteolysis by Anchoring Matrix Metalloproteinase-8 and -9 to PMN Surfaces. Journal of Immunology, 2019, 202, 3267-3281.	0.4	20
60	Identification of Sputum Biomarkers Predictive of Pulmonary Exacerbations in COPD. Chest, 2022, 161, 1239-1249.	0.4	20
61	Low plasma CC16 levels in smokers are associated with a higher risk for chronic bronchitis. European Respiratory Journal, 2015, 46, 1501-1503.	3.1	19
62	Inflammation and emphysema in cigarette smoke-exposed mice when instilled with poly (I:C) or infected with influenza A or respiratory syncytial viruses. Respiratory Research, 2016, 17, 75.	1.4	19
63	IL-13 in LPS-Induced Inflammation Causes Bcl-2 Expression to Sustain Hyperplastic Mucous cells. Scientific Reports, 2018, 8, 436.	1.6	18
64	Comparative analysis of ACE2 protein expression in rodent, non-human primate, and human respiratory tract at baseline and after injury: A conundrum for COVID-19 pathogenesis. PLoS ONE, 2021, 16, e0247510.	1.1	18
65	LPS-induced neutrophilic inflammation and Bcl-2 expression in metaplastic mucous cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L405-L414.	1.3	17
66	Persistent mucus accumulation: a consequence of delayed bronchial mucous cell apoptosis in RAO-affected horses?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L602-L609.	1.3	17
67	Early Endotyping: A Chance for Intervention in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 13-17.	1.4	17
68	15q12 Variants, Sputum Gene Promoter Hypermethylation, and Lung Cancer Risk: A GWAS in Smokers. Journal of the National Cancer Institute, 2015, 107, .	3.0	16
69	Correlation of Cigarette Smoke-Induced Pulmonary Inflammation and Emphysema in C3H and C57Bl/6 Mice. Toxicological Sciences, 2015, 147, 75-83.	1.4	16
70	SPRR1B overexpression enhances entry of cells into the G _O phase of the cell cycle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L889-L898.	1.3	14
71	Expression of the proapoptotic protein Bax is reduced in bronchial mucous cells of asthmatic subjects. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1102-L1109.	1.3	14
72	Blocking Bcl-2 resolves IL-13–mediated mucous cell hyperplasia in a Bik-dependent manner. Journal of Allergy and Clinical Immunology, 2017, 140, 1456-1459.e9.	1.5	14

#	Article	IF	CITATIONS
73	Spirometry and Health Status Worsen with Weight Gain in Obese Smokers but Improve in Normal-Weight Smokers. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 274-281.	2.5	13
74	Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2017, 14, 228-237.	0.7	13
75	Effects of Wood Smoke Constituents on Mucin Gene Expression in Mice and Human Airway Epithelial Cells and on Nasal Epithelia of Subjects with a Susceptibility Gene Variant in <i>Tp53</i> . Environmental Health Perspectives, 2022, 130, 17010.	2.8	13
76	Clinical and cellular effects of cytochrome P-450 modulators. Respiration Physiology, 2001, 128, 79-87.	2.8	12
77	Processes involved in the repair of injured airway epithelia. Archivum Immunologiae Et Therapiae Experimentalis, 2003, 51, 283-8.	1.0	12
78	Tempo-spatial regulation of the Wnt pathway by FAM13A modulates the stemness of alveolar epithelial progenitors. EBioMedicine, 2021, 69, 103463.	2.7	10
79	Is BMF central for anoikis and autophagy?. Autophagy, 2014, 10, 168-169.	4.3	9
80	Identification of novel epigenetic abnormalities as sputum biomarkers for lung cancer risk among smokers and COPD patients. Lung Cancer, 2020, 146, 189-196.	0.9	9
81	Loss of pro-apoptotic Bim promotes accumulation of pulmonary T lymphocytes and enhances allergen-induced goblet cell metaplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L862-L870.	1.3	8
82	Differences in Health-Related Quality of Life Between New Mexican Hispanic and Non-Hispanic White Smokers. Chest, 2016, 150, 869-876.	0.4	8
83	Bik Mediates Caspase-Dependent Cleavage of Viral Proteins to Promote Influenza A Virus Infection. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 664-673.	1.4	8
84	Exacerbations of chronic obstructive pulmonary disease and chronic mucus hypersecretion. Clinical and Applied Immunology Reviews, 2006, 6, 21-36.	0.4	7
85	Inflammation, mucous cell metaplasia, and Bcl-2 expression in response to inhaled lipopolysaccharide aerosol and effect of rolipram. Toxicology and Applied Pharmacology, 2011, 253, 253-260.	1.3	7
86	Adaptation of Proteasomes and Lysosomes to Cellular Environments. Cells, 2020, 9, 2221.	1.8	6
87	Extent of allergic inflammation depends on intermittent versus continuous sensitization to house dust mite. Inhalation Toxicology, 2017, 29, 106-112.	0.8	5
88	A disintegrin and metalloproteinase domain-15 deficiency leads to exaggerated cigarette smoke-induced chronic obstructive pulmonary disease (COPD)-like disease in mice. Mucosal Immunology, 2021, 14, 342-356.	2.7	4
89	Does the BCL-2 family member BIK control lung carcinogenesis?. Molecular and Cellular Oncology, 2018, 5, e1435182.	0.3	3
90	Normalization of FEV1/FVC Ratio to Greater Than 0.7 Does Not Equal Resolution of Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 834-835.	2.5	2

#	Article	IF	CITATIONS
91	T cells suppress memory-dependent rapid mucous cell metaplasia in mouse airways. Respiratory Research, 2016, 17, 132.	1.4	1
92	Grading Severity of Productive Cough Based on Symptoms and Airflow Obstruction. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2018, 15, 206-213.	0.7	1
93	Functional Studies of Single-Nucleotide Polymorphisms Suggest Heterogeneity in Chronic Obstructive Pulmonary Disease due to Susceptibility of Different Cell Types. Annals of the American Thoracic Society, 2018, 15, S285-S285.	1.5	1
94	Casein kinase II activates Bik to induce death of hyperplastic mucous cells in a cell cycleâ€dependent manner. Journal of Cellular Physiology, 2022, 237, 1561-1572.	2.0	1
95	Is IL- $1\hat{l}^2$ a Target for Reducing Hospitalization of Infants Infected with Respiratory Syncytial Virus?. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 248-249.	1.4	1
96	Jumping on the Single-Cell RNA-Sequencing Bandwagon: Take Care Not to Put the Cart before the Horse. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 267-267.	1.4	0