
Xose M Pardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4309720/publications.pdf Version: 2024-02-01

XOSE M PADOO

#	Article	IF	CITATIONS
1	Saliency from hierarchical adaptation through decorrelation and variance normalization. Image and Vision Computing, 2012, 30, 51-64.	2.7	173
2	On the relationship between optical variability, visual saliency, and eye fixations: A computational approach. Journal of Vision, 2012, 12, 17-17.	0.1	114
3	Dynamic Whitening Saliency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39, 893-907.	9.7	72
4	Two-view line matching algorithm based on context and appearance in low-textured images. Pattern Recognition, 2015, 48, 2164-2184.	5.1	48
5	Decorrelation and Distinctiveness Provide with Human-Like Saliency. Lecture Notes in Computer Science, 2009, , 343-354.	1.0	44
6	Gesture-based interaction with voice feedback for a tour-guide robot. Journal of Visual Communication and Image Representation, 2014, 25, 499-509.	1.7	35
7	Decomposition of Three-Dimensional Medical Images Into Visual Patterns. IEEE Transactions on Biomedical Engineering, 2005, 52, 2115-2118.	2.5	13
8	Data-driven synthesis of composite-feature detectors for 3D image analysis. Image and Vision Computing, 2006, 24, 225-238.	2.7	13
9	A new radial symmetry measure applied to photogrammetry. Pattern Analysis and Applications, 2013, 16, 637-646.	3.1	10
10	Self-Organized Multi-Camera Network for a Fast and Easy Deployment of Ubiquitous Robots in Unknown Environments. Sensors, 2013, 13, 426-454.	2.1	10
11	Psychophysical evaluation of individual low-level feature influences on visual attention. Vision Research, 2019, 154, 60-79.	0.7	9
12	Motion representation using composite energy features. Pattern Recognition, 2008, 41, 1110-1123.	5.1	8
13	Incremental Learning from Low-labelled Stream Data in Open-Set Video Face Recognition. Pattern Recognition, 2022, 131, 108885.	5.1	8
14	Dataset bias exposed in face verification. IET Biometrics, 2019, 8, 249-258.	1.6	7
15	Dissimilarity Measures for Visual Pattern Partitioning. Lecture Notes in Computer Science, 2005, , 287-294.	1.0	6
16	Towards a self-sufficient face verification system. Expert Systems With Applications, 2021, 174, 114734.	4.4	6
17	Self-organized multi-camera network for ubiquitous robot deployment in unknown environments. Robotics and Autonomous Systems, 2013, 61, 667-675.	3.0	5
18	SID4VAM: A Benchmark Dataset With Synthetic Images for Visual Attention Modeling. , 2019, , .		5

Xose M Pardo

#	Article	IF	CITATIONS
19	Saliency Based on Decorrelation and Distinctiveness of Local Responses. Lecture Notes in Computer Science, 2009, , 261-268.	1.0	4
20	Scene wireframes sketching for Unmanned Aerial Vehicles. Pattern Recognition, 2019, 86, 354-367.	5.1	4
21	Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images. Sensors, 2019, 19, 4024.	2.1	3
22	Detection and Matching of Lines for Close-Range Photogrammetry. Lecture Notes in Computer Science, 2013, , 732-739.	1.0	3
23	Multiresolution Approach to "Visual Pattern―Partitioning of 3D Images. Lecture Notes in Computer Science, 2004, , 655-663.	1.0	2
24	Improving Scene Recognition through Visual Attention. Lecture Notes in Computer Science, 2009, , 16-23.	1.0	2
25	Dynamic Saliency from Adaptative Whitening. Lecture Notes in Computer Science, 2013, , 345-354.	1.0	2
26	Incremental Learning Techniques Within a Self-updating Approach for Face Verification in Video-Surveillance. Lecture Notes in Computer Science, 2019, , 25-37.	1.0	2
27	Foreword to the special issue on pattern recognition and image analysis. Neural Computing and Applications, 2017, 28, 2371-2372.	3.2	1
28	Outlier Detection for Line Matching. Lecture Notes in Computer Science, 2019, , 159-167.	1.0	1
29	An Adaptive Video-to-Video Face Identification System Based on Self-Training. , 2021, , .		1
30	Automatic Selection of User Samples for a Non-collaborative Face Verification System. Advances in Intelligent Systems and Computing, 2018, , 555-566.	0.5	1
31	Fast Implementation of a New Radial Symmetry Measure for Photogrammetry. Lecture Notes in Computer Science, 2013, , 221-228.	1.0	1
32	Route Learning and Reproduction in a Tour-Guide Robot. Lecture Notes in Computer Science, 2013, , 112-121.	1.0	1
33	Conversion into Three-Dimensional Implicit Surface Representation from Topological Active Volumes Based Segmentation. Lecture Notes in Computer Science, 2005, , 60-68.	1.0	0
34	Distances between frequency features for 3D visual pattern partitioning. Pattern Recognition Letters, 2006, 27, 1127-1141.	2.6	0
35	Unsupervised Method to Remove Noisy and Redundant Images in Scene Recognition. Advances in Intelligent Systems and Computing, 2016, , 695-704.	0.5	0
36	Scene Wireframes Sketching for Drones. Proceedings (mdpi), 2018, 2, .	0.2	0

Xose M Pardo

#	Article	IF	CITATIONS
37	Build 3D Abstractions with Wireframes. , 0, , .		0
38	TECHNIQUES IN SEGMENTING 3D IMAGES WITH ANISOTROPIC SPATIAL RESOLUTION AND FOR TRACKING TEMPORAL IMAGE SEQUENCES AND THEIR APPLICATION. , 2005, , 195-250.		0
39	Videogrammetry System for Wind Turbine Vibration Monitoring. Lecture Notes in Computer Science, 2015, , 505-513.	1.0	0
40	What Do Datasets Say About Saliency Models?. Lecture Notes in Computer Science, 2017, , 104-113.	1.0	0