Bistra B Nankova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4309684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders. PLoS ONE, 2014, 9, e103740.	2.5	208
2	Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Molecular Brain Research, 2005, 142, 28-38.	2.3	122
3	Induction of tyrosine hydroxylase gene expression by a nonneuronal nonpituitary-mediated mechanism in immobilization stress Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5937-5941.	7.1	110
4	Heightened transcription for enzymes involved in norepinephrine biosynthesis in the rat locus coeruleus by immobilization stress. Biological Psychiatry, 1999, 45, 853-862.	1.3	68
5	Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Research, 2006, 1107, 13-23.	2.2	59
6	Fos-Related Antigen 2: Potential Mediator of the Transcriptional Activation in Rat Adrenal Medulla Evoked by Repeated Immobilization Stress. Journal of Neuroscience, 2000, 20, 5647-5653.	3.6	57
7	Transient or sustained transcriptional activation of the genes encoding rat adrenomedullary catecholamine biosynthetic enzymes by different durations of immobilization stress. Neuroscience, 1999, 94, 803-808.	2.3	52
8	Molecular Biology of Stress-Elicited Induction of Catecholamine Biosynthetic Enzymes. Annals of the New York Academy of Sciences, 1995, 771, 327-338.	3.8	49
9	Multiple signalling pathways exist in the stress-triggered regulation of gene expression for catecholamine biosynthetic enzymes and several neuropeptides in the rat adrenal medulla. Acta Physiologica Scandinavica, 1999, 167, 1-9.	2.2	44
10	Valproic acid regulates catecholaminergic pathways by concentration-dependent threshold effects on TH mRNA synthesis and degradation. Brain Research, 2009, 1247, 1-10.	2.2	44
11	Stress elicits trans-synaptic activation of adrenal neuropeptide Y gene expression. Molecular Brain Research, 1994, 27, 138-144.	2.3	43
12	Repeated Immobilization Stress Increases the Binding of câ€Fos‣ike Proteins to a Rat Dopamine βâ€Hydroxylase Promoter Enhancer Sequence. Journal of Neurochemistry, 1993, 61, 776-779.	3.9	41
13	Promoter elements and second messenger pathways involved in transcriptional activation of tyrosine hydroxylase by ionomycin. Molecular Brain Research, 1996, 35, 164-172.	2.3	37
14	Molecular Regulation of Gene Expression of Catecholamine Biosynthetic Enzymes by Stress: Sympathetic Ganglia versus Adrenal Medulla. Annals of the New York Academy of Sciences, 2004, 1018, 370-377.	3.8	37
15	Modulation of Immunological Pathways in Autistic and Neurotypical Lymphoblastoid Cell Lines by the Enteric Microbiome Metabolite Propionic Acid. Frontiers in Immunology, 2017, 8, 1670.	4.8	36
16	Differential regulation of the tyrosine hydroxylase and enkephalin neuropeptide transmitter genes in rat PC12 cells by short chain fatty acids: Concentration-dependent effects on transcription and RNA stability. Brain Research, 2007, 1132, 42-50.	2.2	35
17	Differential Effects of Stress on Gene Transcription Factors in Catecholaminergic Systems. Annals of the New York Academy of Sciences, 2004, 1032, 130-140.	3.8	34
18	Stereospecific Regulation of Tyrosine Hydroxylase and Proenkephalin Genes by Short-Chain Fatty Acids in Rat PC12 Cells. Pediatric Research, 2004, 55, 847-854.	2.3	33

BISTRA B NANKOVA

#	Article	IF	CITATIONS
19	Butyrate, a gut-derived environmental signal, regulates tyrosine hydroxylase gene expression via a novel promoter element. Developmental Brain Research, 2005, 160, 53-62.	1.7	32
20	Induction of Adrenal Tyrosine Hydroxylase mRNA by Single Immobilization Stress Occurs Even After Splanchnic Transection and in the Presence of Cholinergic Antagonists. Journal of Neurochemistry, 2002, 66, 138-146.	3.9	30
21	Glucocorticoids elevate GTP cyclohydrolase I mRNA levels in vivo and in PC12 cells. Molecular Brain Research, 1997, 48, 251-258.	2.3	26
22	Selective in Vivo Stimulation of Stress-Activated Protein Kinase in Different Rat Tissues by Immobilization Stress. Stress, 1998, 2, 289-298.	1.8	25
23	Nicotinic Induction of Preproenkephalin and Tyrosine Hydroxylase Gene Expression in Butyrate-Differentiated Rat PC12 Cells: A Model for Adaptation to Gut-Derived Environmental Signals. Pediatric Research, 2003, 53, 113-118.	2.3	23
24	Adrenocorticotropic hormone (MC-2) receptor mRNA is expressed in rat sympathetic ganglia and up-regulated by stress. Neuroscience Letters, 2003, 344, 149-152.	2.1	16
25	Effect of exercise on mRNA expression of select adrenal medullary catecholamine biosynthetic enzymes. Journal of Applied Physiology, 2002, 93, 463-468.	2.5	14
26	Partial blockade of nicotinic acetylcholine receptors improves the counterregulatory response to hypoglycemia in recurrently hypoglycemic rats. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E580-E588.	3.5	13
27	Absence of gut microbial colonization attenuates the sympathoadrenal response to hypoglycemic stress in mice: implications for human neonates. Pediatric Research, 2019, 85, 574-581.	2.3	12
28	Activated ribosomal RNA synthesis in regenerated rat liver upon inhibition of protein synthesis. Molecular Biology Reports, 1991, 15, 45-52.	2.3	9
29	Bacteria - derived short chain fatty acids restore sympathoadrenal responsiveness to hypoglycemia after antibiotic-induced gut microbiota depletion. Neurobiology of Stress, 2021, 15, 100376.	4.0	9
30	Multiple Pathways in Regulation of Dopamine β-Hydroxylase. Advances in Pharmacology, 1997, 42, 53-56.	2.0	7
31	Posttranscriptional regulation of adrenal TH gene expression contributes to the maladaptive responses triggered by insulin-induced recurrent hypoglycemia. Physiological Reports, 2015, 3, e12307.	1.7	7
32	Role of Ca2+ in induction of neurotransmitter-related gene expression by butyrate. NeuroReport, 2004, 15, 1177-1181.	1.2	6
33	Nicotinic receptor partial agonists alter catecholamine homeostasis and response to nicotine in PC12 cells. Neuroscience Letters, 2012, 516, 212-216.	2.1	5
34	Whole genome expression profiling associates activation of unfolded protein response with impaired production and release of epinephrine after recurrent hypoglycemia. PLoS ONE, 2017, 12, e0172789.	2.5	3
35	Differential Gene Expression of Tyrosine Hydroxylase in Rats Exposed Long-Term to Various Stressors. Advances in Behavioral Biology, 2002, , 317-320.	0.2	3
36	Recurrent Hypoglycemic Stress Differentially Regulates Catecholamine Release and Transmitter Gene Expression. , 2014, , 190.		0