List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4309650/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Passive solar high-yield seawater desalination by modular and low-cost distillation. Nature Sustainability, 2018, 1, 763-772.	11.5	262
2	Scaling behaviour for the water transport in nanoconfined geometries. Nature Communications, 2014, 5, 4565.	5.8	122
3	A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications. Renewable and Sustainable Energy Reviews, 2016, 60, 1615-1633.	8.2	104
4	Solar passive distiller with high productivity and Marangoni effect-driven salt rejection. Energy and Environmental Science, 2020, 13, 3646-3655.	15.6	101
5	Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes. Nature Communications, 2016, 7, 12762.	5.8	80
6	Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nature Sustainability, 2021, 4, 715-724.	11.5	72
7	Water transport control in carbon nanotube arrays. Nanoscale Research Letters, 2014, 9, 559.	3.1	69
8	Thermal transport across nanoparticle–fluid interfaces: the interplay of interfacial curvature and nanoparticle–fluid interactions. Physical Chemistry Chemical Physics, 2017, 19, 3244-3253.	1.3	57
9	Thermal transport phenomena in nanoparticle suspensions. Journal of Physics Condensed Matter, 2016, 28, 483003.	0.7	55
10	Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation. Advanced Functional Materials, 2014, 24, 4584-4594.	7.8	50
11	Passive heat transfer enhancement by 3D printed Pitot tube based heat sink. International Communications in Heat and Mass Transfer, 2016, 74, 36-39.	2.9	45
12	Efficient steam generation by inexpensive narrow gap evaporation device for solar applications. Scientific Reports, 2017, 7, 11970.	1.6	40
13	Nonequilibrium molecular dynamics simulations of nanoconfined fluids at solid-liquid interfaces. Journal of Chemical Physics, 2017, 146, 244507.	1.2	38
14	Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets. Applied Energy, 2020, 258, 114086.	5.1	38
15	Thermal transmittance of carbon nanotube networks: Guidelines for novel thermal storage systems and polymeric material of thermal interest. Renewable and Sustainable Energy Reviews, 2015, 41, 1028-1036.	8.2	35
16	Exergy analysis of solar desalination systems based on passive multi-effect membrane distillation. Energy Reports, 2020, 6, 445-454.	2.5	34
17	From GROMACS to LAMMPS: GRO2LAM. Journal of Molecular Modeling, 2019, 25, 147.	0.8	29
18	Coffee-based colloids for direct solar absorption. Scientific Reports, 2019, 9, 4701.	1.6	29

#	Article	IF	CITATIONS
19	An overview on the use of additives and preparation procedure in phase change materials for thermal energy storage with a focus on long term applications. Journal of Energy Storage, 2022, 53, 105140.	3.9	28
20	Nanoscale thermal properties of carbon nanotubes/epoxy composites by atomistic simulations. International Journal of Thermal Sciences, 2021, 159, 106588.	2.6	27
21	Thermal transmittance in graphene based networks for polymer matrix composites. International Journal of Thermal Sciences, 2017, 117, 98-105.	2.6	26
22	Effect of interfacial thermal resistance and nanolayer on estimates of effective thermal conductivity of nanofluids. Case Studies in Thermal Engineering, 2018, 12, 454-461.	2.8	25
23	Atomistic modelling of water transport and adsorption mechanisms in silicoaluminophosphate for thermal energy storage. Applied Thermal Engineering, 2019, 160, 114075.	3.0	25
24	Protocols for atomistic modeling of water uptake into zeolite crystals for thermal storage and other applications. Applied Thermal Engineering, 2016, 101, 762-769.	3.0	24
25	Multistage and passive cooling process driven by salinity difference. Science Advances, 2020, 6, eaax5015.	4.7	22
26	Interfacial water thickness at inorganic nanoconstructs and biomolecules: Size matters. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1735-1740.	0.9	21
27	Data-driven appraisal of renewable energy potentials for sustainable freshwater production in Africa. Renewable and Sustainable Energy Reviews, 2021, 149, 111414.	8.2	21
28	Synergistic freshwater and electricity production using passive membrane distillation and waste heat recovered from camouflaged photovoltaic modules. Journal of Cleaner Production, 2021, 318, 128464.	4.6	21
29	Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa. Energies, 2018, 11, 3477.	1.6	18
30	Estimating photovoltaic energy potential from a minimal set of randomly sampled data. Renewable Energy, 2016, 97, 457-467.	4.3	14
31	Convective heat transfer enhancement by diamond shaped micro-protruded patterns for heat sinks: Thermal fluid dynamic investigation and novel optimization methodology. Applied Thermal Engineering, 2016, 93, 1254-1263.	3.0	14
32	Sliding Dynamics of Parallel Graphene Sheets: Effect of Geometry and Van Der Waals Interactions on Nano-Spring Behavior. Crystals, 2018, 8, 149.	1.0	14
33	Pore- and macro-scale simulations of high temperature proton exchange fuel cells – HTPEMFC – and possible strategies for enhancing durability. International Journal of Hydrogen Energy, 2017, 42, 26730-26743.	3.8	13
34	Water/Ethanol and 13X Zeolite Pairs for Long-Term Thermal Energy Storage at Ambient Pressure. Frontiers in Energy Research, 2019, 7, .	1.2	13
35	Multiscale simulation approach to heat and mass transfer properties of nanostructured materials for sorption heat storage. Energy Procedia, 2017, 126, 509-516.	1.8	12
36	Minimal crystallographic descriptors of sorption properties in hypothetical MOFs and role in sequential learning optimization. Npj Computational Materials, 2022, 8, .	3.5	12

#	Article	IF	CITATIONS
37	Techno-Economic Analysis of a Solar Thermal Plant for Large-Scale Water Pasteurization. Applied Sciences (Switzerland), 2020, 10, 4771.	1.3	11
38	Characterisation and modelling of water wicking and evaporation in capillary porous media for passive and energy-efficient applications. Applied Thermal Engineering, 2022, 208, 118159.	3.0	11
39	Inference of analytical thermodynamic models for biological networks. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 1122-1132.	1.2	10
40	A Kinetic Perspective on k‒ε Turbulence Model and Corresponding Entropy Production. Entropy, 2016, 18, 121.	1.1	10
41	Installation of a Concentrated Solar Power System for the Thermal Needs of Buildings or Industrial Processes. Energy Procedia, 2016, 101, 956-963.	1.8	10
42	Mesoscopic Moment Equations for Heat Conduction: Characteristic Features and Slow–Fast Mode Decomposition. Entropy, 2018, 20, 126.	1.1	10
43	Heat Transfer at the Interface of Graphene Nanoribbons with Different Relative Orientations and Gaps. Energies, 2019, 12, 796.	1.6	10
44	Machine learning and materials modelling interpretation of <i>in vivo</i> toxicological response to TiO ₂ nanoparticles library (UV and non-UV exposure). Nanoscale, 2021, 13, 14666-14678.	2.8	10
45	Bottom up Approach Toward Prediction of Effective Thermophysical Properties of Carbon-Based Nanofluids. Heat Transfer Engineering, 2018, 39, 1686-1697.	1.2	9
46	Mechanistic correlation between water infiltration and framework hydrophilicity in MFI zeolites. Scientific Reports, 2019, 9, 18429.	1.6	9
47	Thermally triggered nanorocket from double-walled carbon nanotube in water. Molecular Simulation, 2019, 45, 417-424.	0.9	9
48	Unshrouded Plate Fin Heat Sinks for Electronics Cooling: Validation of a Comprehensive Thermal Model and Cost Optimization in Semi-Active Configuration. Energies, 2016, 9, 608.	1.6	8
49	Multiscale Computational Fluid Dynamics Methodology for Predicting Thermal Performance of Compact Heat Exchangers. Journal of Heat Transfer, 2016, 138, .	1.2	8
50	Towards a Multiscale Simulation Approach of Nanofluids for Volumetric Solar Receivers: Assessing Inter-particle Potential Energy. Energy Procedia, 2016, 91, 3-10.	1.8	7
51	Anisotropic Electrostatic Interactions in Coarse-Grained Water Models to Enhance the Accuracy and Speed-Up Factor of Mesoscopic Simulations. Journal of Physical Chemistry B, 2021, 125, 12020-12027.	1.2	7
52	Deep-sea reverse osmosis desalination for energy efficient low salinity enhanced oil recovery. Applied Energy, 2021, 304, 117661.	5.1	6
53	Textured and Rigid Capillary Materials for Passive Energyâ€Conversion Devices. Advanced Materials Interfaces, 2022, 9, .	1.9	6
54	Integrated receivers with bottom subcooling for automotive air conditioning: Detailed experimental study of their filling capacity. International Journal of Refrigeration, 2016, 62, 72-84.	1.8	5

#	Article	IF	CITATIONS
55	Convective Heat Transfer Enhancement through Laser-Etched Heat Sinks: Elliptic Scale-Roughened and Cones Patterns. Energies, 2020, 13, 1360.	1.6	3
56	Nano-metering of Solvated Biomolecules Or Nanoparticles from Water Self-Diffusivity in Bio-inspired Nanopores. Nanoscale Research Letters, 2019, 14, 336.	3.1	3
57	3 Modeling carbon-based smart materials. , 2020, , 33-80.		2
58	Effect of water nanoconfinement on the dynamic properties of paramagnetic colloidal complexes. Physical Chemistry Chemical Physics, 2021, 23, 16948-16957.	1.3	1
59	Magnetic Nanoparticles: Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation (Adv. Funct. Mater. 29/2014). Advanced Functional Materials, 2014, 24, 4562-4562.	7.8	0
60	THERMAL TRANSPORT ACROSS NANOPARTICLE-FLUID INTERFACES., 2017, , .		0
61	Polymer-Based Metamaterials for Synergistic Light and Heat Management. , 2020, , .		О