João P Borges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4309320/publications.pdf

Version: 2024-02-01

92 2,385 27 papers citations h-index

94 94 94 3945 all docs docs citations times ranked citing authors

46

g-index

#	Article	IF	Citations
1	Properties of strontium-containing BG 58S produced by alkali-mediated sol-gel process. Ceramics International, 2022, 48, 11456-11465.	2.3	6
2	Study on the Incorporation of Chitosan Flakes in Electrospun Polycaprolactone Scaffolds. Polymers, 2022, 14, 1496.	2.0	7
3	Superparamagnetic Iron Oxide Nanozymes for Synergistic Cancer Treatment. , 2022, 8, .		1
4	Designing Structural Metamaterials. , 2022, 8, .		0
5	Extracellular Hyperthermia for the Treatment of Advanced Cutaneous Melanoma. , 2022, 8, .		1
6	Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective. Progress in Materials Science, 2021, 116, 100742.	16.0	51
7	Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine. Nanomaterials, 2021, 11, 193.	1.9	15
8	Incorporation of Dual-Stimuli Responsive Microgels in Nanofibrous Membranes for Cancer Treatment by Magnetic Hyperthermia. Gels, 2021, 7, 28.	2.1	12
9	Injectable hydrogels with two different rates of drug release based on pluronic/water system filled with poly(Îμ-caprolactone) microcapsules. Journal of Materials Science, 2021, 56, 13416-13428.	1.7	9
10	Nanomaterials for magnetic hyperthermia. European Journal of Public Health, 2021, 31, .	0.1	1
11	Antibacterial bioglass in dental implants: a canine clinical study. European Journal of Public Health, 2021, 31, .	0.1	0
12	Injectable Composite Systems Based on Microparticles in Hydrogels for Bioactive Cargo Controlled Delivery. Gels, 2021, 7, 147.	2.1	11
13	A New Long-Term Composite Drug Delivery System Based on Thermo-Responsive Hydrogel and Nanoclay. Nanomaterials, 2021, 11, 25.	1.9	17
14	Structural metamaterials with negative mechanical/thermomechanical indices: A review. Progress in Natural Science: Materials International, 2021, 31, 801-808.	1.8	23
15	Recent advances in magnetic electrospun nanofibers for cancer theranostics application. Progress in Natural Science: Materials International, 2021, 31, 835-844.	1.8	14
16	Conductive Electrospun Polyaniline/Polyvinylpyrrolidone Nanofibers: Electrical and Morphological Characterization of New Yarns for Electronic Textiles. Fibers, 2020, 8, 24.	1.8	13
17	Preparation and Characterization of Zinc and Magnesium Doped Bioglasses. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 465-475.	0.2	0
18	Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineering. Journal of Polymer Research, 2019, 26, 1.	1.2	6

#	Article	IF	CITATIONS
19	Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering. Materials Science and Engineering C, 2019, 103, 109819.	3.8	33
20	Application of Hyperthermia for Cancer Treatment: Synthesis and Characterization of Magnetic Nanoparticles and their internalization on Tumor Cell Lines*. , 2019, , .		4
21	Injectable Hydrogels Based on Pluronic/Water Systems Filled with Alginate Microparticles for Biomedical Applications. Materials, 2019, 12, 1083.	1.3	43
22	Nontoxic glasses: Preparation, structural, electrical and biological properties. International Journal of Applied Ceramic Technology, 2019, 16, 1885-1894.	1.1	12
23	Development of polymeric anepectic meshes: auxetic metamaterials with negative thermal expansion. Smart Materials and Structures, 2019, 28, 045010.	1.8	44
24	Polymer blending or fiber blending: A comparative study using chitosan and poly(Îμ aprolactone) electrospun fibers. Journal of Applied Polymer Science, 2019, 136, 47191.	1.3	16
25	Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration. Waste and Biomass Valorization, 2019, 10, 1913-1927.	1.8	35
26	Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane) Tj ETQq0	0 0 ₂ .gBT /	Overlock 10 T
27	Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. Journal of Materials Chemistry A, 2018, 6, 256-265.	5 . 2	53
28	Injectable hydrogels based on pluronic/water systems filled with alginate microparticles: Rheological characterization. AIP Conference Proceedings, 2018, , .	0.3	0
29	Electrospun composite cellulose acetate/iron oxide nanoparticles non-woven membranes for magnetic hyperthermia applications. Carbohydrate Polymers, 2018, 198, 9-16.	5.1	43
30	Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels, 2018, 4, 54.	2.1	144
31	Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes. Organic Electronics, 2018, 62, 530-535.	1.4	15
32	Fluorescent and conductive cellulose acetate-based membranes with porphyrins. Materials Today Communications, 2017, 11, 26-37.	0.9	5
33	Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin. AAPS PharmSciTech, 2017, 18, 2579-2585.	1.5	42
34	Chitosan Inverted Colloidal Crystal scaffolds: Influence of molecular weight on structural stability. Materials Letters, 2017, 193, 50-53.	1.3	6
35	Tailoring the morphology of hydroxyapatite particles using a simple solvothermal route. Ceramics International, 2017, 43, 3784-3791.	2.3	14
36	Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning. RSC Advances, 2017, 7, 48972-48979.	1.7	14

#	Article	IF	Citations
37	Template-free synthesis of sub-micrometric cobalt fibers with controlled shape and structure. Characterization and magnetic properties. Journal of Magnetism and Magnetic Materials, 2017, 425, 6-11.	1.0	4
38	Bio-inspired production of chitosan/chitin films from liquid crystalline suspensions. Carbohydrate Polymers, 2017, 155, 372-381.	5.1	21
39	Hybrid polysaccharide-based systems for biomedical applications. , 2017, , 107-149.		3
40	Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling. Carbohydrate Polymers, 2016, 147, 304-312.	5.1	137
41	Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Applied Surface Science, 2016, 383, 240-247.	3.1	122
42	Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Carbohydrate Polymers, 2016, 149, 382-390.	5.1	72
43	Towards the development of multifunctional chitosan-based iron oxide nanoparticles: Optimization and modelling of doxorubicin release. Carbohydrate Polymers, 2016, 153, 212-221.	5.1	28
44	Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analysis. RSC Advances, 2016, 6, 76370-76380.	1.7	11
45	A simple sol-gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineering. Materials Letters, 2016, 185, 407-410.	1.3	26
46	Natural Nanofibres for Composite Applications. Textile Science and Clothing Technology, 2016, , 261-299.	0.4	2
47	Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology, 2015, 26, 425704.	1.3	64
48	Electrorheological characterization of dispersions in silicone oil of encapsulated liquid crystal 4-n-penthyl- $4\hat{a}$ \in 2-cyanobiphenyl in polyvinyl alcohol and in silica. Physica Scripta, 2015, 90, 035802.	1.2	6
49	Electrospun mats of biodegradable chitosan-based polyurethane urea. , 2015, , .		0
50	Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers. Journal of Hazardous Materials, 2015, 299, 298-305.	6.5	60
51	One-pot synthesis of dual-stimuli responsive hybrid PNIPAAm-chitosan microgels. Materials and Design, 2015, 86, 745-751.	3.3	39
52	Production of Poly(vinyl alcohol) (PVA) Fibers with Encapsulated Natural Deep Eutectic Solvent (NADES) Using Electrospinning. ACS Sustainable Chemistry and Engineering, 2015, 3, 2504-2509.	3.2	35
53	Chitin-Based Nanocomposites: Biomedical Applications. Advanced Structured Materials, 2015, , 439-457.	0.3	6
54	Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers. Optical Materials, 2015, 39, 278-281.	1.7	14

#	Article	IF	CITATIONS
55	An Overview of Inverted Colloidal Crystal Systems for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2014, 20, 437-454.	2.5	25
56	Effects of surfactants on the magnetic properties of iron oxide colloids. Journal of Colloid and Interface Science, 2014, 419, 46-51.	5.0	87
57	Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and <i>In Vitro</i> evaluation. Journal of Applied Polymer Science, 2014, 131, .	1.3	54
58	Strongly Photosensitive and Fluorescent F8T2 Electrospun Fibers. Macromolecular Materials and Engineering, 2013, 298, 174-180.	1.7	6
59	Development of antimicrobial Ion Jelly fibers. RSC Advances, 2013, 3, 24400.	1.7	10
60	Electrospun Fibers in Composite Materials for Medical ApplicationsÂ. Journal of Composites and Biodegradable Polymers, 2013, 1, 56-65.	0.3	18
61	Doxorubicin vs. ladirubicin: methods for improving osteosarcoma treatment. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1239-1249.	1.1	5
62	Electrospun hydroxyapatite fibers from a simple sol–gel system. Materials Letters, 2012, 67, 233-236.	1.3	58
63	Electrospinning of lon Jelly fibers. Materials Letters, 2012, 83, 161-164.	1.3	14
64	Influence of polarization on the bioactivity of nanopowders of hydroxyapatite., 2011,,.		0
64	Influence of polarization on the bioactivity of nanopowders of hydroxyapatite., 2011,,. All-Cellulosic Based Composites., 2011,, 399-421.		0
		5.3	
65	All-Cellulosic Based Composites. , 2011, , 399-421. Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosensors and	5.3	4
65	All-Cellulosic Based Composites., 2011,, 399-421. Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosensors and Bioelectronics, 2011, 26, 2742-2745. Electro-optical light scattering shutter using electrospun cellulose-based nano- and microfibers.		38
65 66 67	All-Cellulosic Based Composites., 2011,, 399-421. Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosensors and Bioelectronics, 2011, 26, 2742-2745. Electro-optical light scattering shutter using electrospun cellulose-based nano- and microfibers. Applied Physics Letters, 2009, 95, . A Systematic Study of Solution and Processing Parameters on Nanofiber Morphology Using a New	1.5	4 38 27
65 66 67 68	All-Cellulosic Based Composites., 2011,, 399-421. Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosensors and Bioelectronics, 2011, 26, 2742-2745. Electro-optical light scattering shutter using electrospun cellulose-based nano- and microfibers. Applied Physics Letters, 2009, 95, . A Systematic Study of Solution and Processing Parameters on Nanofiber Morphology Using a New Electrospinning Apparatus. Journal of Nanoscience and Nanotechnology, 2009, 9, 3535-3545. Development of a new chitosan hydrogel for wound dressing. Wound Repair and Regeneration, 2009,	0.9	4 38 27 55
65 66 67 68	All-Cellulosic Based Composites., 2011,, 399-421. Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosensors and Bioelectronics, 2011, 26, 2742-2745. Electro-optical light scattering shutter using electrospun cellulose-based nano- and microfibers. Applied Physics Letters, 2009, 95, . A Systematic Study of Solution and Processing Parameters on Nanofiber Morphology Using a New Electrospinning Apparatus. Journal of Nanoscience and Nanotechnology, 2009, 9, 3535-3545. Development of a new chitosan hydrogel for wound dressing. Wound Repair and Regeneration, 2009, 17, 817-824.	1.5 0.9 1.5	4 38 27 55 256

#	Article	IF	CITATIONS
73	Liquid Crystalline Behaviour of Chitosan in Formic, Acetic, Monochloroacetic Acid Solutions. Materials Science Forum, 2006, 514-516, 1010-1014.	0.3	17
74	Study of Electrochromic Devices Incorporating a Polymer Gel Electrolyte Component. Materials Science Forum, 2006, 514-516, 83-87.	0.3	2
75	Novel Multilayer Coatings on Polyethylene for Acetabular Devices. Materials Science Forum, 2006, 514-516, 868-871.	0.3	0
76	Mechanical Characterization of Dense Hydroxyapatite Blocks. Materials Science Forum, 2006, 514-516, 1083-1086.	0.3	2
77	Optimization of the Synthesis of Hydroxyapatite Powders for Biomedical Applications Using Taguchi's Method. Materials Science Forum, 2006, 514-516, 1025-1028.	0.3	3
78	Hydroxyapatite Foams for Bone Replacement. Key Engineering Materials, 2005, 284-286, 341-344.	0.4	11
79	Preparation and Characterization of Injectable Chitosan-Hydroxyapatite Microspheres. Key Engineering Materials, 2004, 254-256, 573-576.	0.4	14
80	Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films. Polymer Composites, 2004, 25, 102-110.	2.3	28
81	Influence of the Strain on the Electrical Resistance of Zinc Oxide Doped Thin Film Deposited on Polymer Substrates. Advanced Engineering Materials, 2002, 4, 610-612.	1.6	23
82	Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering. Surface and Coatings Technology, 2002, 151-152, 247-251.	2.2	67
83	New bio-composites based on short fibre reinforced hydroxypropylcellulose films. Composite Interfaces, 2001, 8, 233-241.	1.3	8
84	Cellulose-Based Composite Films. Mechanics of Composite Materials, 2001, 37, 257-264.	0.9	23
85	Preparation and liquid-crystalline properties of toluene-4-sulphonyl urethane of hydroxypropylcellulose. Liquid Crystals, 1993, 14, 653-659.	0.9	1
86	Enhancing the Response of Chemocapacitors with Electrospun Nanofiber Films. Materials Science Forum, 0, 730-732, 197-202.	0.3	1
87	Cellulose-Based Bioelectronic Devices. , 0, , .		16
88	Magnetic Bioactive Glass-Based 3D Systems for Bone Cancer Therapy and Regeneration. , 0, , .		2
89	PLA Electrospun Fibres Coated with PEDOT by Vapor-Phase Polymerization for Neural Regeneration. , 0,		0
90	Development of Magnetic Nanofibrous Membranes for Localized Solid Cancer Treatment. , 0, , .		0

#	Article	IF	CITATIONS
91	Piezoelectric Calcium Modified Barium Titanate for Bone Regeneration. , 0, , .		O
92	Magnetic Scaffolds for Bone Cancer Theranostics. , 0, , .		0