João P Borges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4309320/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a new chitosan hydrogel for wound dressing. Wound Repair and Regeneration, 2009, 17, 817-824.	1.5	256
2	Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels, 2018, 4, 54.	2.1	144
3	Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling. Carbohydrate Polymers, 2016, 147, 304-312.	5.1	137
4	Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Applied Surface Science, 2016, 383, 240-247.	3.1	122
5	Effects of surfactants on the magnetic properties of iron oxide colloids. Journal of Colloid and Interface Science, 2014, 419, 46-51.	5.0	87
6	Helical Twisting of Electrospun Liquid Crystalline Cellulose Micro―and Nanofibers. Advanced Materials, 2008, 20, 4821-4825.	11.1	81
7	Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Carbohydrate Polymers, 2016, 149, 382-390.	5.1	72
8	Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering. Surface and Coatings Technology, 2002, 151-152, 247-251.	2.2	67
9	Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology, 2015, 26, 425704.	1.3	64
10	Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers. Journal of Hazardous Materials, 2015, 299, 298-305.	6.5	60
11	Electrospun hydroxyapatite fibers from a simple sol–gel system. Materials Letters, 2012, 67, 233-236.	1.3	58
12	A Systematic Study of Solution and Processing Parameters on Nanofiber Morphology Using a New Electrospinning Apparatus. Journal of Nanoscience and Nanotechnology, 2009, 9, 3535-3545.	0.9	55
13	Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and <i>In Vitro</i> evaluation. Journal of Applied Polymer Science, 2014, 131, .	1.3	54
14	Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. Journal of Materials Chemistry A, 2018, 6, 256-265.	5.2	53
15	Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective. Progress in Materials Science, 2021, 116, 100742.	16.0	51
16	Development of polymeric anepectic meshes: auxetic metamaterials with negative thermal expansion. Smart Materials and Structures, 2019, 28, 045010.	1.8	44
17	Electrospun composite cellulose acetate/iron oxide nanoparticles non-woven membranes for magnetic hyperthermia applications. Carbohydrate Polymers, 2018, 198, 9-16.	5.1	43
18	Injectable Hydrogels Based on Pluronic/Water Systems Filled with Alginate Microparticles for Biomedical Applications. Materials, 2019, 12, 1083.	1.3	43

JOãO P BORGES

#	ARTICLE	IF	CITATIONS
19	Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin. AAPS PharmSciTech, 2017, 18, 2579-2585.	1.5	42
20	One-pot synthesis of dual-stimuli responsive hybrid PNIPAAm-chitosan microgels. Materials and Design, 2015, 86, 745-751.	3.3	39
21	Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosensors and Bioelectronics, 2011, 26, 2742-2745.	5.3	38
22	How to mimic the shapes of plant tendrils on the nano and microscale: spirals and helices of electrospun liquid crystalline cellulose derivatives. Soft Matter, 2009, 5, 2772.	1.2	37
23	Production of Poly(vinyl alcohol) (PVA) Fibers with Encapsulated Natural Deep Eutectic Solvent (NADES) Using Electrospinning. ACS Sustainable Chemistry and Engineering, 2015, 3, 2504-2509.	3.2	35
24	Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration. Waste and Biomass Valorization, 2019, 10, 1913-1927.	1.8	35
25	Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering. Materials Science and Engineering C, 2019, 103, 109819.	3.8	33
26	Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films. Polymer Composites, 2004, 25, 102-110.	2.3	28
27	Towards the development of multifunctional chitosan-based iron oxide nanoparticles: Optimization and modelling of doxorubicin release. Carbohydrate Polymers, 2016, 153, 212-221.	5.1	28
28	Electro-optical light scattering shutter using electrospun cellulose-based nano- and microfibers. Applied Physics Letters, 2009, 95, .	1.5	27
29	A simple sol-gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineering. Materials Letters, 2016, 185, 407-410.	1.3	26
30	An Overview of Inverted Colloidal Crystal Systems for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2014, 20, 437-454.	2.5	25
31	Cellulose-Based Composite Films. Mechanics of Composite Materials, 2001, 37, 257-264.	0.9	23
32	Influence of the Strain on the Electrical Resistance of Zinc Oxide Doped Thin Film Deposited on Polymer Substrates. Advanced Engineering Materials, 2002, 4, 610-612.	1.6	23
33	Structural metamaterials with negative mechanical/thermomechanical indices: A review. Progress in Natural Science: Materials International, 2021, 31, 801-808.	1.8	23
34	Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane) Tj ETQq0 () 0.rgBT /C	Overlock 10 Tr
35	Bio-inspired production of chitosan/chitin films from liquid crystalline suspensions. Carbohydrate Polymers, 2017, 155, 372-381.	5.1	21

³⁶Electrospun Fibers in Composite Materials for Medical ApplicationsÂ. Journal of Composites and
Biodegradable Polymers, 2013, 1, 56-65.0.318

João P Borges

#	Article	IF	CITATIONS
37	Liquid Crystalline Behaviour of Chitosan in Formic, Acetic, Monochloroacetic Acid Solutions. Materials Science Forum, 2006, 514-516, 1010-1014.	0.3	17
38	A New Long-Term Composite Drug Delivery System Based on Thermo-Responsive Hydrogel and Nanoclay. Nanomaterials, 2021, 11, 25.	1.9	17
39	Cellulose-Based Bioelectronic Devices. , 0, , .		16
40	Polymer blending or fiber blending: A comparative study using chitosan and poly(ε aprolactone) electrospun fibers. Journal of Applied Polymer Science, 2019, 136, 47191.	1.3	16
41	Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes. Organic Electronics, 2018, 62, 530-535.	1.4	15
42	Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine. Nanomaterials, 2021, 11, 193.	1.9	15
43	Preparation and Characterization of Injectable Chitosan-Hydroxyapatite Microspheres. Key Engineering Materials, 2004, 254-256, 573-576.	0.4	14
44	Electrospinning of Ion Jelly fibers. Materials Letters, 2012, 83, 161-164.	1.3	14
45	Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers. Optical Materials, 2015, 39, 278-281.	1.7	14
46	Tailoring the morphology of hydroxyapatite particles using a simple solvothermal route. Ceramics International, 2017, 43, 3784-3791.	2.3	14
47	Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning. RSC Advances, 2017, 7, 48972-48979.	1.7	14
48	Recent advances in magnetic electrospun nanofibers for cancer theranostics application. Progress in Natural Science: Materials International, 2021, 31, 835-844.	1.8	14
49	Conductive Electrospun Polyaniline/Polyvinylpyrrolidone Nanofibers: Electrical and Morphological Characterization of New Yarns for Electronic Textiles. Fibers, 2020, 8, 24.	1.8	13
50	Nontoxic glasses: Preparation, structural, electrical and biological properties. International Journal of Applied Ceramic Technology, 2019, 16, 1885-1894.	1.1	12
51	Incorporation of Dual-Stimuli Responsive Microgels in Nanofibrous Membranes for Cancer Treatment by Magnetic Hyperthermia. Gels, 2021, 7, 28.	2.1	12
52	Hydroxyapatite Foams for Bone Replacement. Key Engineering Materials, 2005, 284-286, 341-344.	0.4	11
53	Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analysis. RSC Advances, 2016, 6, 76370-76380.	1.7	11
54	Injectable Composite Systems Based on Microparticles in Hydrogels for Bioactive Cargo Controlled Delivery. Gels, 2021, 7, 147.	2.1	11

JOãO P BORGES

#	Article	IF	CITATIONS
55	Development of antimicrobial Ion Jelly fibers. RSC Advances, 2013, 3, 24400.	1.7	10
56	Injectable hydrogels with two different rates of drug release based on pluronic/water system filled with poly(ε-caprolactone) microcapsules. Journal of Materials Science, 2021, 56, 13416-13428.	1.7	9
57	New bio-composites based on short fibre reinforced hydroxypropylcellulose films. Composite Interfaces, 2001, 8, 233-241.	1.3	8
58	Study on the Incorporation of Chitosan Flakes in Electrospun Polycaprolactone Scaffolds. Polymers, 2022, 14, 1496.	2.0	7
59	Strongly Photosensitive and Fluorescent F8T2 Electrospun Fibers. Macromolecular Materials and Engineering, 2013, 298, 174-180.	1.7	6
60	Electrorheological characterization of dispersions in silicone oil of encapsulated liquid crystal 4-n-penthyl-4′-cyanobiphenyl in polyvinyl alcohol and in silica. Physica Scripta, 2015, 90, 035802.	1.2	6
61	Chitin-Based Nanocomposites: Biomedical Applications. Advanced Structured Materials, 2015, , 439-457.	0.3	6
62	Chitosan Inverted Colloidal Crystal scaffolds: Influence of molecular weight on structural stability. Materials Letters, 2017, 193, 50-53.	1.3	6
63	Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineering. Journal of Polymer Research, 2019, 26, 1.	1.2	6
64	Properties of strontium-containing BG 58S produced by alkali-mediated sol-gel process. Ceramics International, 2022, 48, 11456-11465.	2.3	6
65	Doxorubicin vs. ladirubicin: methods for improving osteosarcoma treatment. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1239-1249.	1.1	5
66	Fluorescent and conductive cellulose acetate-based membranes with porphyrins. Materials Today Communications, 2017, 11, 26-37.	0.9	5
67	All-Cellulosic Based Composites. , 2011, , 399-421.		4
68	Template-free synthesis of sub-micrometric cobalt fibers with controlled shape and structure. Characterization and magnetic properties. Journal of Magnetism and Magnetic Materials, 2017, 425, 6-11.	1.0	4
69	Application of Hyperthermia for Cancer Treatment: Synthesis and Characterization of Magnetic Nanoparticles and their internalization on Tumor Cell Lines*. , 2019, , .		4
70	Optimization of the Synthesis of Hydroxyapatite Powders for Biomedical Applications Using Taguchi's Method. Materials Science Forum, 2006, 514-516, 1025-1028.	0.3	3
71	Cellulose-Based Anisotropic Composites. Materials Science Forum, 2008, 587-588, 604-607.	0.3	3

Hybrid polysaccharide-based systems for biomedical applications. , 2017, , 107-149.

3

JoãO P Borges

#	Article	IF	CITATIONS
73	Study of Electrochromic Devices Incorporating a Polymer Gel Electrolyte Component. Materials Science Forum, 2006, 514-516, 83-87.	0.3	2
74	Mechanical Characterization of Dense Hydroxyapatite Blocks. Materials Science Forum, 2006, 514-516, 1083-1086.	0.3	2
75	Natural Nanofibres for Composite Applications. Textile Science and Clothing Technology, 2016, , 261-299.	0.4	2
76	Magnetic Bioactive Glass-Based 3D Systems for Bone Cancer Therapy and Regeneration. , 0, , .		2
77	Preparation and liquid-crystalline properties of toluene-4-sulphonyl urethane of hydroxypropylcellulose. Liquid Crystals, 1993, 14, 653-659.	0.9	1
78	Enhancing the Response of Chemocapacitors with Electrospun Nanofiber Films. Materials Science Forum, 0, 730-732, 197-202.	0.3	1
79	Nanomaterials for magnetic hyperthermia. European Journal of Public Health, 2021, 31, .	0.1	1
80	Superparamagnetic Iron Oxide Nanozymes for Synergistic Cancer Treatment. , 2022, 8, .		1
81	Extracellular Hyperthermia for the Treatment of Advanced Cutaneous Melanoma. , 2022, 8, .		1
82	Novel Multilayer Coatings on Polyethylene for Acetabular Devices. Materials Science Forum, 2006, 514-516, 868-871.	0.3	0
83	Influence of polarization on the bioactivity of nanopowders of hydroxyapatite. , 2011, , .		0
84	Electrospun mats of biodegradable chitosan-based polyurethane urea. , 2015, , .		0
85	Injectable hydrogels based on pluronic/water systems filled with alginate microparticles: Rheological characterization. AIP Conference Proceedings, 2018, , .	0.3	Ο
86	Antibacterial bioglass in dental implants: a canine clinical study. European Journal of Public Health, 2021, 31, .	0.1	0
87	Preparation and Characterization of Zinc and Magnesium Doped Bioglasses. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 465-475.	0.2	0
88	Designing Structural Metamaterials. , 2022, 8, .		0
89	PLA Electrospun Fibres Coated with PEDOT by Vapor-Phase Polymerization for Neural Regeneration. , 0,		0
90	Development of Magnetic Nanofibrous Membranes for Localized Solid Cancer Treatment. , 0, , .		0

0

#	Article	IF	CITATIONS
91	Piezoelectric Calcium Modified Barium Titanate for Bone Regeneration. , 0, , .		0

92 Magnetic Scaffolds for Bone Cancer Theranostics. , 0, , .