Haoyu Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4308862/publications.pdf Version: 2024-02-01

Ηλογμίλης

#	Article	IF	CITATIONS
1	The influence of land use on the concentration and vertical distribution of PBDEs in soils of an e-waste recycling region of South China. Environmental Pollution, 2014, 191, 126-131.	7.5	48
2	A Global View on the Swell and Wind Sea Climate by the Jason-1 Mission: A Revisit. Journal of Atmospheric and Oceanic Technology, 2013, 30, 1833-1841.	1.3	47
3	Sources, compositions, and optical properties of humic-like substances in Beijing during the 2014 APEC summit: Results from dual carbon isotope and Fourier-transform ion cyclotron resonance mass spectrometry analyses. Environmental Pollution, 2018, 239, 322-331.	7.5	47
4	Photoenhanced Uptake of NO ₂ and HONO Formation on Real Urban Grime. Environmental Science and Technology Letters, 2019, 6, 413-417.	8.7	46
5	Exploring the differences of antibiotic resistance genes profiles between river surface water and sediments using metagenomic approach. Ecotoxicology and Environmental Safety, 2018, 161, 64-69.	6.0	45
6	Swell dissipation from 10 years of Envisat advanced synthetic aperture radar in wave mode. Geophysical Research Letters, 2016, 43, 3423-3430.	4.0	34
7	Characterizing the antibiotic resistance genes in a river catchment: Influence of anthropogenic activities. Journal of Environmental Sciences, 2018, 69, 125-132.	6.1	32
8	Light-Enhanced Heterogeneous Conversion of NO ₂ to HONO on Solid Films Consisting of Fluorene and Fluorene/Na ₂ SO ₄ : An Impact on Urban and Indoor Atmosphere. Environmental Science & Technology, 2020, 54, 11079-11086.	10.0	25
9	Event-Based Validation of Swell Arrival Time. Journal of Physical Oceanography, 2016, 46, 3563-3569.	1.7	24
10	Source apportionment of water-soluble oxidative potential in ambient total suspended particulate from Bangkok: Biomass burning versus fossil fuel combustion. Atmospheric Environment, 2020, 235, 117624.	4.1	24
11	Tracking the attenuation and nonbreaking dissipation of swells using altimeters. Journal of Geophysical Research: Oceans, 2016, 121, 1446-1458.	2.6	23
12	Wave Climate from Spectra and Its Connections with Local and Remote Wind Climate. Journal of Physical Oceanography, 2019, 49, 543-559.	1.7	21
13	Molecular marker study of aerosols in the northern South China Sea: Impact of atmospheric outflow from the Indo-China Peninsula and South China. Atmospheric Environment, 2019, 206, 225-236.	4.1	18
14	Radiocarbonâ€derived source apportionment of fine carbonaceous aerosols before, during, and after the 2014 Asiaâ€Pacific Economic Cooperation (APEC) summit in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4177-4187.	3.3	17
15	Limitation of SAR Quasi-Linear Inversion Data on Swell Climate: An Example of Global Crossing Swells. Remote Sensing, 2017, 9, 107.	4.0	17
16	Evaluation of altimeter undersampling in estimating global wind and wave climate using virtual observation. Remote Sensing of Environment, 2020, 245, 111840.	11.0	15
17	Improving Altimeter Wind Speed Retrievals Using Ocean Wave Parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1917-1924.	4.9	14
18	Using Polyurethane Foam-Based Passive Air Sampling Technique to Monitor Monosaccharides at a Regional Scale. Environmental Science & Technology, 2018, 52, 12546-12555.	10.0	12

HAOYU JIANG

#	Article	IF	CITATIONS
19	Indirect Validation of Ocean Remote Sensing Data via Numerical Model: An Example of Wave Heights from Altimeter. Remote Sensing, 2020, 12, 2627.	4.0	12
20	Climatology of Wind-Seas and Swells in the China Seas from Wave Hindcast. Journal of Ocean University of China, 2020, 19, 90-100.	1.2	10
21	Changes in residual air saturation after thorough drainage processes in an air–water fine sandy medium. Journal of Hydrology, 2014, 519, 271-283.	5.4	9
22	Wave Climate Patterns from Spatial Tracking of Global Long-Term Ocean Wave Spectra. Journal of Climate, 2020, 33, 3381-3393.	3.2	9
23	Validation of Wave Spectral Partitions From SWIM Instrument On-Board CFOSAT Against <i>In Situ</i> Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	9
24	Can contemporary satellites estimate swell dissipation rate?. Remote Sensing of Environment, 2017, 201, 24-33.	11.0	8
25	Spatially Tracking Wave Events in Partitioned Numerical Wave Model Outputs. Journal of Atmospheric and Oceanic Technology, 2019, 36, 1933-1944.	1.3	7
26	Photosensitized Degradation of DMSO Initiated by PAHs at the Airâ€Water Interface, as an Alternative Source of Organic Sulfur Compounds to the Atmosphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035346.	3.3	7
27	Assessment of Two SMOS Sea Surface Salinity Level 3 Products Against Argo Upper Salinity Measurements. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1434-1438.	3.1	6
28	Ocean Swell: How Much Do We Know. , 2017, , .		6
29	Accurate mean wave period from SWIM instrument on-board CFOSAT. Remote Sensing of Environment, 2022, 280, 113149.	11.0	6
30	Increasing Historical Tropical Cyclone-Induced Extreme Wave Heights in the Northern East China Sea during 1979 to 2018. Remote Sensing, 2020, 12, 2464.	4.0	5
31	Evaluation on the Capability of Revealing Ocean Swells from Sentinel-1A Wave Spectra Measurements. Journal of Atmospheric and Oceanic Technology, 2020, 37, 1289-1304.	1.3	5
32	A revisit of global wind-sea and swell climate and variability using multiplatform altimeters. Remote Sensing of Environment, 2022, 271, 112922.	11.0	5
33	Identifying storm-induced wave origins using SAR wave mode data. Science China Earth Sciences, 2016, 59, 1971-1980.	5.2	4
34	Wind speed and direction estimation from wave spectra using deep learning. Atmospheric Measurement Techniques, 2022, 15, 1-9.	3.1	4
35	An index of wind–wave coupling and its global climatology. International Journal of Climatology, 2016, 36, 3139-3147	3.5	2
36	Wind-Generated Gravity Waves Retrieval From High-Resolution 2-D Maps of Sea Surface Elevation by Airborne Interferometric Altimeter. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	2

HAOYU JIANG

#	Article	IF	CITATIONS
37	Modal recovery of sea-level variability in the South China Sea using merged altimeter data. Chinese Journal of Oceanology and Limnology, 2015, 33, 1233-1244.	0.7	1
38	Study on dynamic slope angle of sandy seabed around the submarine piggyback pipeline in steady flow. Journal of Marine Engineering and Technology, 2019, , 1-13.	4.1	1
39	Separation of Wind-Sea and Swell Wave Heights Using Altimeter Data. , 2021, , .		1
40	A global distribution of crossing swell from Envisat ASAR Wave Mode data based on swell propagation. , 2016, , .		0
41	Amphidromic Lines in the Atmosphere: An Example of Global Pressure Field Annual Harmonic. Earth and Space Science, 2021, 8, e2021EA001638.	2.6	0