Joon Hyung Shim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4308592/publications.pdf

Version: 2024-02-01

77 papers 2,546 citations

201385 27 h-index 205818 48 g-index

78 all docs

78 docs citations

78 times ranked

2447 citing authors

#	Article	IF	CITATIONS
1	Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1241-1248.	4.0	20
2	<scp>Highâ€performance</scp> protonic ceramic fuel cells with <scp>electrodeâ€electrolyte</scp> composite cathode functional layers. International Journal of Energy Research, 2022, 46, 6553-6561.	2.2	12
3	Improved strontium segregation suppression of lanthanum strontium cobalt oxide cathode via chemical etching and atomic layer deposition. International Journal of Energy Research, 2022, 46, 12467-12475.	2.2	2
4	Atomic layer deposited Pt/Cu bimetallic catalysts for use in highâ€performance fuel cell cathodes. International Journal of Energy Research, 2022, 46, 17180-17188.	2.2	4
5	Inkjet Printing of Silica Aerogel for Fabrication of 2-D Patterned Thermal Insulation Layers. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 445-451.	2.7	10
6	Surface Treatment of Pt Cathode Using Ceria Infiltration for High Performance Polymer Electrolyte Membrane Fuel Cells. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 509-518.	2.7	6
7	High–performance protonic ceramic fuel cells with a PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode with palladium–rich interface coating. Journal of Power Sources, 2021, 482, 229043.	4.0	23
8	Materials design of sodium chloride solid electrolytes Na ₃ MCl ₆ for all-solid-state sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23037-23045.	5.2	23
9	Material Design Strategy for Halide Solid Electrolytes Li ₃ MX ₆ (X = Cl, Br, and) Tj ETQq1	1,0,78431 3.2	4 rgBT /Ove 62
10	Cyclic Thermal Effects on Devices of Twoâ€Dimensional Layered Semiconducting Materials. Advanced Electronic Materials, 2021, 7, 2100348.	0.6	4
	Electionic Materials, 2021, 7, 2100340.	2.6	
11	Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 405-410.		0
11 12	Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry. International Journal of Precision Engineering and Manufacturing - Green	2.7	9
	Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 405-410. Evaluating mechanical properties of 100nm-thick atomic layer deposited Al2O3 as a free-standing film.	2.7	
12	Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 405-410. Evaluating mechanical properties of 100nm-thick atomic layer deposited Al2O3 as a free-standing film. Scripta Materialia, 2020, 187, 256-261. Thermal analysis of a 1-kW hydrogen-fueled solid oxide fuel cell stack by three-dimensional numerical	2.7 2.6 4.4	9
12	Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 405-410. Evaluating mechanical properties of 100nm-thick atomic layer deposited Al2O3 as a free-standing film. Scripta Materialia, 2020, 187, 256-261. Thermal analysis of a 1-kW hydrogen-fueled solid oxide fuel cell stack by three-dimensional numerical simulation. Energy Conversion and Management, 2020, 222, 113213. Coke-Free Oxidation of Methanol in Solid Oxide Fuel Cells with Heterogeneous Nickel–Palladium Catalysts Prepared by Atomic Layer Deposition. ACS Sustainable Chemistry and Engineering, 2020, 8,	2.7 2.6 4.4 3.2	9 21
12 13 14	Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 405-410. Evaluating mechanical properties of 100nm-thick atomic layer deposited Al2O3 as a free-standing film. Scripta Materialia, 2020, 187, 256-261. Thermal analysis of a 1-kW hydrogen-fueled solid oxide fuel cell stack by three-dimensional numerical simulation. Energy Conversion and Management, 2020, 222, 113213. Coke-Free Oxidation of Methanol in Solid Oxide Fuel Cells with Heterogeneous Nickel–Palladium Catalysts Prepared by Atomic Layer Deposition. ACS Sustainable Chemistry and Engineering, 2020, 8, 10529-10535. Lanthanum strontium cobaltite-infiltrated lanthanum strontium cobalt ferrite cathodes fabricated by inkjet printing for high-performance solid oxide fuel cells. Journal of Alloys and Compounds, 2020,	2.7 2.6 4.4 3.2 2.8	9 21 18
12 13 14	Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 405-410. Evaluating mechanical properties of 100nm-thick atomic layer deposited Al2O3 as a free-standing film. Scripta Materialia, 2020, 187, 256-261. Thermal analysis of a 1-kW hydrogen-fueled solid oxide fuel cell stack by three-dimensional numerical simulation. Energy Conversion and Management, 2020, 222, 113213. Coke-Free Oxidation of Methanol in Solid Oxide Fuel Cells with Heterogeneous Nickel–Palladium Catalysts Prepared by Atomic Layer Deposition. ACS Sustainable Chemistry and Engineering, 2020, 8, 10529-10535. Lanthanum strontium cobaltite-infiltrated lanthanum strontium cobalt ferrite cathodes fabricated by inkjet printing for high-performance solid oxide fuel cells. Journal of Alloys and Compounds, 2020, 843, 155806. Theoretical Design of Lithium Chloride Superionic Conductors for All-Solid-State High-Voltage	2.7 2.6 4.4 3.2 2.8 4.0	9 21 18

#	Article	IF	CITATIONS
19	Fabrication of yttria-stabilized zirconia aerogel for high-performance thermal barrier coating. Journal of Alloys and Compounds, 2019, 806, 1430-1434.	2.8	20
20	Effects of atomic layer deposition conditions on the formation of thin ZnO films and their photocatalytic characteristics. Ceramics International, 2019, 45, 18823-18830.	2.3	31
21	Atomic Layer Deposition for Surface Engineering of Solid Oxide Fuel Cell Electrodes. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 629-646.	2.7	27
22	La0.6Sr0.4Co0.2Fe0.8O3-δ cathode surface-treated with La2NiO4+δ by aerosol-assisted chemical vapor deposition for high performance solid oxide fuel cells. Ceramics International, 2019, 45, 12366-12371.	2.3	10
23	Highly Active Oxygen Evolution on Carbon Fiber Paper Coated with Atomic-Layer-Deposited Cobalt Oxide. ACS Applied Materials & Interfaces, 2019, 11, 10608-10615.	4.0	12
24	Nanoscale Surface and Interface Engineering of Solid Oxide Fuel Cells by Atomic Layer Deposition. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 611-628.	2.7	22
25	Profitable Production of Stable Electrical Power Using Wind-battery Hybrid Power Systems: A Case Study from Mt. Taegi, South Korea. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 919-930.	2.7	3
26	Direct Alcoholâ€Fueled Lowâ€Temperature Solid Oxide Fuel Cells: A Review. Energy Technology, 2019, 7, 5-19.	1.8	32
27	Evaluation of atomic layer deposited alumina as a protective layer for domestic silver articles: Anti-corrosion test in artificial sweat. Applied Surface Science, 2018, 441, 718-723.	3.1	15
28	Ceramics breakthrough. Nature Energy, 2018, 3, 168-169.	19.8	40
29	Three-dimensional thermal stress analysis of the re-oxidized Ni-YSZ anode functional layer in solid oxide fuel cells. Journal of Alloys and Compounds, 2018, 752, 148-154.	2.8	18
30	3D Evaluation of Porous Zeolite Absorbents Using FIB-SEM Tomography. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 195-199.	2.7	8
31	Nanoporous silver cathode surface-treated by aerosol-assisted chemical vapor deposition of gadolinia-doped ceria for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2018, 402, 246-251.	4.0	9
32	Surface Tuning of Solid Oxide Fuel Cell Cathode by Atomic Layer Deposition. Advanced Energy Materials, 2018, 8, 1802506.	10.2	48
33	Ag surface-coated with nano-YSZ as an alternative to Pt catalyst for low-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2018, 769, 545-551.	2.8	11
34	Novel Conductive Filament Metal–Interlayer–Semiconductor Contact Structure for Ultralow Contact Resistance Achievement. ACS Applied Materials & Logical Science (2018), 10, 26378-26386.	4.0	5
35	Highâ€Performance Protonic Ceramic Fuel Cells with 1 Âμm Thick Y:Ba(Ce, Zr)O ₃ Electrolytes. Advanced Energy Materials, 2018, 8, 1801315.	10.2	79
36	Compositional optimization of gadolinia-doped ceria treatment for enhanced oxygen reduction kinetics in low-temperature solid oxide fuel cells. Thin Solid Films, 2017, 624, 95-100.	0.8	6

#	Article	IF	Citations
37	Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nature Communications, 2017, 8, 14553.	5.8	218
38	High Performance Anode-Supported Solid Oxide Fuel Cells with Thin Film Yttria-Stabilized Zirconia Membrane Prepared by Aerosol-Assisted Chemical Vapor Deposition. Journal of the Electrochemical Society, 2017, 164, F484-F490.	1.3	19
39	Mechanism of Cathodic Performance Enhancement by a Few-Nanometer-Thick Oxide Overcoat on Porous Pt Cathodes of Solid Oxide Fuel Cells. ACS Omega, 2017, 2, 806-813.	1.6	19
40	Fermi-Level Unpinning Technique with Excellent Thermal Stability for n-Type Germanium. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35988-35997.	4.0	14
41	Fabrication of Lanthanum Strontium Cobalt Ferrite–Gadolinium-Doped Ceria Composite Cathodes Using a Low-Price Inkjet Printer. ACS Applied Materials & Interfaces, 2017, 9, 39347-39356.	4.0	25
42	Highâ€Performance Silver Cathode Surface Treated with Scandiaâ€Stabilized Zirconia Nanoparticles for Intermediate Temperature Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1601956.	10.2	32
43	Effective Schottky Barrier Height Lowering of Metal/n-Ge with a TiO ₂ /GeO ₂ Interlayer Stack. ACS Applied Materials & Interfaces, 2016, 8, 35419-35425.	4.0	37
44	High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix. Journal of Materials Chemistry A, 2016, 4, 6395-6403.	5.2	52
45	Nanoporous silver cathode surface treated by atomic layer deposition of CeO <i>_x</i> for low-temperature solid oxide fuel cells. Nanotechnology, 2016, 27, 185403.	1.3	32
46	High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate–Zirconate Electrolytes on Compositionally Gradient Anodes. ACS Applied Materials & 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	4.0	43
47	Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells. Journal of Power Sources, 2016, 327, 401-407.	4.0	57
48	Chemical Protection of Polycarbonate Surfaces by Atomic Layer Deposition of Alumina with Oxygen Plasma Pretreatment. Advanced Materials Interfaces, 2016, 3, 1600340.	1.9	6
49	Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30090-30098.	4.0	31
50	Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer. Journal of Power Sources, 2016, 306, 503-509.	4.0	52
51	Nano-granulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 301, 72-77.	4.0	21
52	Characterization of ZnO film grown on polycarbonate by atomic layer deposition at low temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	4
53	Platinum–Ruthenium Heterogeneous Catalytic Anodes Prepared by Atomic Layer Deposition for Use in Direct Methanol Solid Oxide Fuel Cells. ACS Catalysis, 2015, 5, 1914-1921.	5.5	48
54	Performance Degradation of Lanthanum Strontium Cobaltite after Surface Modification. Journal of the Electrochemical Society, 2015, 162, F622-F626.	1.3	27

#	Article	IF	Citations
55	Nanoporous silver cathodes surface-treated by atomic layer deposition of Y:ZrO2 for high-performance low-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 295, 175-181.	4.0	48
56	Resistive switching characteristics of polycrystalline SrTiO3 films. Applied Physics Letters, 2014, 104, .	1.5	15
57	MEMS-based thin-film solid-oxide fuel cells. MRS Bulletin, 2014, 39, 798-804.	1.7	39
58	Proton incorporation in yttria-stabilized zirconia during atomic layer deposition. International Journal of Hydrogen Energy, 2014, 39, 2621-2627.	3.8	11
59	Micro ceramic fuel cells with multilayered yttrium-doped barium cerate and zirconate thin film electrolytes. Journal of Power Sources, 2014, 248, 1163-1169.	4.0	33
60	Separation of interlayer resistance in multilayer MoS2 field-effect transistors. Applied Physics Letters, 2014, 104, .	1.5	46
61	Evaluation of porous platinum, nickel, and lanthanum strontium cobaltite as electrode materials for low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 17828-17835.	3.8	23
62	Evaluation of batteries for wind-hybrid systems in South Korean islands. International Journal of Precision Engineering and Manufacturing, 2014, 15, 761-768.	1.1	2
63	Catalyst-free growth of readily detachable nanographene on alumina. Journal of Materials Chemistry C, 2013, 1, 6438.	2.7	10
64	Atomic layer deposition of thin-film ceramic electrolytes for high-performance fuel cells. Journal of Materials Chemistry A, 2013, 1, 12695.	5.2	88
65	Economic feasibility of a PV system for grid-connected semiconductor facilities in South Korea. International Journal of Precision Engineering and Manufacturing, 2013, 14, 2033-2041.	1.1	12
66	Low-temperature atomic layer deposition of Al2O3 on blown polyethylene films with plasma-treated surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	7
67	Estimation of Singapore's hourly solar radiation using hybrid-Markov transition matrices method. International Journal of Precision Engineering and Manufacturing, 2013, 14, 323-327.	1.1	6
68	Patterned Silver Nanomesh Cathode for Low-Temperature Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2012, 159, B541-B545.	1.3	17
69	Improved oxygen surface exchange kinetics at grain boundaries in nanocrystalline yttria-stabilized zirconia. MRS Communications, 2012, 2, 107-111.	0.8	15
70	Reduction of residual thermal stress on anode-supported SOFCs using porous aid layers. International Journal of Precision Engineering and Manufacturing, 2012, 13, 2149-2154.	1.1	3
71	Comparative performance analysis of silicon nanowire tunnel FETs and MOSFETs on plastic substrates in flexible logic circuit applications. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1350-1358.	0.8	11
72	Economic and environmental analysis of a wind-hybrid power system with desalination in Hong-do, South Korea. International Journal of Precision Engineering and Manufacturing, 2012, 13, 623-630.	1.1	22

#	Article	IF	CITATIONS
73	Catalysts with Pt Surface Coating by Atomic Layer Deposition for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B793.	1.3	48
74	Intermediate-Temperature Ceramic Fuel Cells with Thin Film Yttrium-Doped Barium Zirconate Electrolytes. Chemistry of Materials, 2009, 21, 3290-3296.	3.2	148
7 5	Proton conduction in thin film yttrium-doped barium zirconate. Applied Physics Letters, 2008, 92, .	1.5	56
76	Atomic Layer Deposition of Yttria-Stabilized Zirconia for Solid Oxide Fuel Cells. Chemistry of Materials, 2007, 19, 3850-3854.	3.2	395
77	Stabilization of platinum catalyst surfaceâ€treated by atomic layer deposition of cobalt for polymer electrolyte membrane fuel cells. International Journal of Energy Research, 0, , .	2.2	0