
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4308336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B: Environmental, 2014, 147, 359-368.	10.8	404
2	The crucial roles of inflammatory mediators in inflammation: A review. Veterinary World, 2018, 11, 627-635.	0.7	384
3	Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Applied Energy, 2015, 160, 58-70.	5.1	290
4	Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Conversion and Management, 2017, 141, 171-182.	4.4	240
5	Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass and Bioenergy, 2011, 35, 827-834.	2.9	236
6	Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3-SiO2 core-shell magnetic nanoparticles. Journal of Cleaner Production, 2019, 208, 816-826.	4.6	222
7	The Effect of Sodium Dodecyl Sulfate (SDS) and Cetyltrimethylammonium Bromide (CTAB) on the Properties of ZnO Synthesized by Hydrothermal Method. International Journal of Molecular Sciences, 2012, 13, 13275-13293.	1.8	200
8	Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 2011, 15, 1258-1270.	8.2	196
9	Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Processing Technology, 2011, 92, 2420-2428.	3.7	191
10	Preparation and application of binary acid–base CaO–La 2 O 3 catalyst for biodiesel production. Renewable Energy, 2015, 74, 124-132.	4.3	160
11	Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renewable and Sustainable Energy Reviews, 2018, 82, 3645-3655.	8.2	159
12	Improving the hydrogen production from water over MgO promoted Ni–Si/CNTs photocatalyst. Journal of Cleaner Production, 2019, 238, 117887.	4.6	158
13	Step towards the sustainable toxic dyes removal and recycling from aqueous solution- A comprehensive review. Resources, Conservation and Recycling, 2021, 175, 105849.	5.3	152
14	Assessment of clean H2 energy production from water using novel silicon photocatalyst. Journal of Cleaner Production, 2020, 244, 118805.	4.6	148
15	Studies on design of heterogeneous catalysts for biodiesel production. Chemical Engineering Research and Design, 2013, 91, 131-144.	2.7	143
16	Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3MnOSO42â^'/ZrO2 nanoparticle solid catalyst. Fuel, 2015, 142, 38-45.	3.4	139
17	Transesterification of Jatropha curcas crude oil to biodiesel on calcium lanthanum mixed oxide catalyst: Effect of stoichiometric composition. Energy Conversion and Management, 2014, 88, 1290-1296.	4.4	137
18	An Overview of Recent Research in the Conversion of Glycerol into Biofuels, Fuel Additives and other Bio-Based Chemicals. Catalysts, 2019, 9, 15.	1.6	127

#	Article	IF	CITATIONS
19	Transesterification of non-edible Jatropha curcas oil to biodiesel using binary Ca–Mg mixed oxide catalyst: Effect of stoichiometric composition. Chemical Engineering Journal, 2011, 178, 342-347.	6.6	124
20	Production of biodiesel from non-edible Jatropha curcas oil via transesterification using Bi 2 O 3 –La 2 O 3 catalyst. Energy Conversion and Management, 2014, 88, 1257-1262.	4.4	122
21	Algae derived biodiesel using nanocatalytic transesterification process. Chemical Engineering Research and Design, 2016, 111, 362-370.	2.7	120
22	Transesterification of jatropha oil with methanol over Mg–Zn mixed metal oxide catalysts. Energy, 2013, 49, 12-18.	4.5	113
23	Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate. Chemistry Central Journal, 2013, 7, 136.	2.6	111
24	A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts. Renewable and Sustainable Energy Reviews, 2021, 138, 110667.	8.2	109
25	Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management, 2019, 181, 562-570.	4.4	107
26	Low-cost solid catalyst derived from waste Cyrtopleura costata (Angel Wing Shell) for biodiesel production using microalgae oil. Energy Conversion and Management, 2015, 101, 749-756.	4.4	105
27	Biodiesel production via transesterification of palm oil by using CaO–CeO2 mixed oxide catalysts. Fuel, 2015, 162, 288-293.	3.4	104
28	Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst. Renewable Energy, 2017, 111, 611-619.	4.3	98
29	Production of green diesel via cleaner catalytic deoxygenation of Jatropha curcas oil. Journal of Cleaner Production, 2017, 167, 1048-1059.	4.6	98
30	Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non-food feedstock. Industrial Crops and Products, 2013, 45, 355-359.	2.5	97
31	Advances in solid-catalytic and non-catalytic technologies for biodiesel production. Energy Conversion and Management, 2014, 88, 1200-1218.	4.4	95
32	Effective biodiesel synthesis from waste cooking oil and biomass residue solid green catalyst. Chemical Engineering Journal, 2018, 347, 137-144.	6.6	94
33	Production of biodiesel from palm oil using modified Malaysian natural dolomites. Energy Conversion and Management, 2014, 78, 738-744.	4.4	91
34	Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renewable Energy, 2015, 81, 347-354.	4.3	91
35	Preparation of Na2O supported CNTs nanocatalyst for efficient biodiesel production from waste-oil. Energy Conversion and Management, 2020, 205, 112445.	4.4	86
36	Renewable energy deployment to combat energy crisis in Pakistan. Energy, Sustainability and Society, 2016, 6, .	1.7	85

#	Article	IF	CITATIONS
37	Characterization of bismuth oxide catalysts prepared from bismuth trinitrate pentahydrate: influence of bismuth concentration. Catalysis Today, 2004, 93-95, 701-709.	2.2	84
38	Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate. Chemistry Central Journal, 2013, 7, 71.	2.6	84
39	Syngas production from glycerol-dry(CO2) reforming over La-promoted Ni/Al2O3 catalyst. Renewable Energy, 2015, 74, 441-447.	4.3	83
40	Biodiesel production from crude Jatropha Curcas oil using calcium based mixed oxide catalysts. Fuel, 2014, 136, 244-252.	3.4	82
41	Deoxygenation of waste cooking to renewable diesel over walnut shell-derived nanorode activated carbon supported CaO-La 2 O 3 catalyst. Energy Conversion and Management, 2017, 151, 311-323.	4.4	82
42	Catalytic gasification of algal biomass for hydrogen-rich gas production: Parametric optimization via central composite design. Energy Conversion and Management, 2018, 158, 235-245.	4.4	81
43	Biodiesel production in the presence of sulfonated mesoporous ZnAl2O4 catalyst via esterification of palm fatty acid distillate (PFAD). Fuel, 2016, 178, 253-262.	3.4	80
44	CeO2–SiO2 supported nickel catalysts for dry reforming of methane toward syngas production. Applied Catalysis A: General, 2013, 468, 359-369.	2.2	79
45	Synthesis of clamshell derived Ca(OH)2 nano-particles via simple surfactant-hydration treatment. Chemical Engineering Journal, 2015, 262, 1043-1051.	6.6	78
46	Green diesel production from palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt catalysts. Biomass and Bioenergy, 2020, 134, 105476.	2.9	78
47	Ultrathin Assembles of Porous Array for Enhanced H2 Evolution. Scientific Reports, 2020, 10, 2324.	1.6	75
48	Performance and exhaust emission characteristics of direct-injection diesel engine fueled with enriched biodiesel. Energy Conversion and Management, 2015, 106, 365-372.	4.4	74
49	Therapeutic uses of epicatechin in diabetes and cancer. Veterinary World, 2017, 10, 869-872.	0.7	74
50	Transesterification of Nannochloropsis oculata microalga's oil to biodiesel using calcium methoxide catalyst. Energy, 2014, 78, 63-71.	4.5	73
51	Transesterification activity and characterization of natural CaO derived from waste venus clam () Tj ETQq1 1 0.7 and Design, 2017, 105, 303-315.	784314 rgB 2.7	T /Overlock 1 72
52	Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2,4,6-trichlorophenol. Desalination, 2011, 276, 303-309.	4.0	69
53	Biodiesel synthesis over millimetric γ-Al2O3/KI catalyst. Energy, 2015, 89, 965-973.	4.5	69
54	Mesoporous NiO/Al-SBA-15 catalysts for solvent-free deoxygenation of palm fatty acid distillate. Microporous and Mesoporous Materials, 2019, 276, 13-22.	2.2	68

#	Article	IF	CITATIONS
55	Synthesis and catalytic activity of hydration–dehydration treated clamshell derived CaO for biodiesel production. Chemical Engineering Research and Design, 2015, 102, 368-377.	2.7	67
56	Biodiesel production from Jatropha curcas L. oil with Ca and La mixed oxide catalyst in near supercritical methanol conditions. Journal of Supercritical Fluids, 2015, 104, 243-250.	1.6	67
57	In Vitro Antioxidant and Antiproliferative Activities of Methanolic Plant Part Extracts of Theobroma cacao. Molecules, 2014, 19, 18317-18331.	1.7	66
58	Pyro-lytic de-oxygenation of waste cooking oil for green diesel production over Ag2O3-La2O3/AC nano-catalyst. Journal of Analytical and Applied Pyrolysis, 2019, 137, 171-184.	2.6	65
59	Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production. Chemistry Central Journal, 2014, 8, 30.	2.6	63
60	A new route for the synthesis of La-Ca oxide supported on nano activated carbon via vacuum impregnation method for one pot esterification-transesterification reaction. Chemical Engineering Journal, 2016, 304, 61-71.	6.6	63
61	Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid distillate. Arabian Journal of Chemistry, 2016, 9, 179-189.	2.3	63
62	A Review on Thermal Conversion of Plant Oil (Edible and Inedible) into Green Fuel Using Carbon-Based Nanocatalyst. Catalysts, 2019, 9, 350.	1.6	62
63	Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Processing Technology, 2020, 208, 106519.	3.7	62
64	Carbohydrate-derived Solid Acid Catalysts for Biodiesel Production from Low-Cost Feedstocks: A Review. Catalysis Reviews - Science and Engineering, 2014, 56, 187-219.	5.7	61
65	Waste clamshell-derived CaO supported Co and W catalysts for renewable fuels production via cracking-deoxygenation of triolein. Journal of Analytical and Applied Pyrolysis, 2016, 120, 110-120.	2.6	61
66	Effective synthesis of biodiesel from Jatropha curcas oil using betaine assisted nanoparticle heterogeneous catalyst from eggshell of Gallus domesticus. Renewable Energy, 2017, 111, 892-905.	4.3	60
67	Efficient waste Gallus domesticus shell derived calcium-based catalyst for biodiesel production. Fuel, 2018, 211, 67-75.	3.4	60
68	Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Conversion and Management, 2020, 210, 112698.	4.4	60
69	Supercritical water gasification of empty fruit bunches from oil palm for hydrogen production. Fuel, 2015, 143, 563-569.	3.4	59
70	Introducing the novel composite photocatalysts to boost the performance of hydrogen (H2) production. Journal of Cleaner Production, 2021, 313, 127909.	4.6	57
71	Energy security in Bangladesh perspective—An assessment and implication. Renewable and Sustainable Energy Reviews, 2014, 32, 154-171.	8.2	56
72	Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas. RSC Advances, 2015, 5, 4266-4276.	1.7	56

#	Article	IF	CITATIONS
73	Methoxy-functionalized mesostructured stable carbon catalysts for effective biodiesel production from non-edible feedstock. Chemical Engineering Journal, 2018, 334, 1851-1868.	6.6	54
74	Synthesis of bimetallic gold-pallidum loaded on carbon as efficient catalysts for the oxidation of benzyl alcohol into benzaldehyde. Journal of Molecular Liquids, 2018, 271, 885-891.	2.3	54
75	Biodiesel from low cost palm stearin using metal doped methoxide solid catalyst. Industrial Crops and Products, 2015, 76, 281-289.	2.5	53
76	Alumina supported/unsupported mixed oxides of Ca and Mg as heterogeneous catalysts for transesterification of Nannochloropsis sp. microalga's oil. Energy Conversion and Management, 2014, 88, 1193-1199.	4.4	52
77	Free-H2 deoxygenation of Jatropha curcas oil into cleaner diesel-grade biofuel over coconut residue-derived activated carbon catalyst. Journal of Cleaner Production, 2020, 249, 119381.	4.6	51
78	Synthesis and characterization of Fe2O3/CaO derived from Anadara Granosa for methyl ester production. Energy Conversion and Management, 2016, 126, 124-131.	4.4	50
79	Solvent-free catalytic deoxygenation of palm fatty acid distillate over cobalt and manganese supported on activated carbon originating from waste coconut shell. Journal of Analytical and Applied Pyrolysis, 2019, 144, 104690.	2.6	50
80	Advances in physiochemical and biotechnological approaches for sustainable metal recovery from e-waste: A critical review. Journal of Cleaner Production, 2021, 323, 129015.	4.6	50
81	Improving valuable metal ions capturing from spent Li-ion batteries with novel materials and approaches. Journal of Molecular Liquids, 2021, 338, 116703.	2.3	50
82	Towards the robust hydrogen (H2) fuel production with niobium complexes-A review. Journal of Cleaner Production, 2021, 318, 128439.	4.6	50
83	Methyl ester production from palm fatty acid distillate (PFAD) using sulfonated cow dung-derived carbon-based solid acid catalyst. Energy Conversion and Management, 2019, 196, 1306-1315.	4.4	49
84	Properties of high strength concrete using white and dune sands under normal and autoclaved curing. Construction and Building Materials, 2012, 27, 218-222.	3.2	48
85	Modified sulfonation method for converting carbonized glucose into solid acid catalyst for the esterification of palm fatty acid distillate. Fuel, 2018, 229, 68-78.	3.4	48
86	Kinetic and thermodynamic of heterogeneously K3PO4/AC-catalysed transesterification via pseudo-first order mechanism and Eyring-Polanyi equation. Fuel, 2018, 232, 653-658.	3.4	48
87	Production of renewable diesel from Jatropha curcas oil via pyrolytic-deoxygenation over various multi-wall carbon nanotube-based catalysts. Chemical Engineering Research and Design, 2020, 142, 336-349.	2.7	48
88	Sub- and supercritical esterification of palm fatty acid distillate with carbohydrate-derived solid acid catalyst. Chemical Engineering Journal, 2016, 284, 872-878.	6.6	47
89	Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 11215-11228.	3.8	47
90	Esterification of palm fatty acid distillate (PFAD) to biodiesel using Bi-functional catalyst synthesized from waste angel wing shell (Cyrtopleura costata). Renewable Energy, 2019, 131, 187-196.	4.3	47

#	Article	IF	CITATIONS
91	Efficient deoxygenation of waste cooking oil over Co ₃ O ₄ –La ₂ O ₃ -doped activated carbon for the production of diesel-like fuel. RSC Advances, 2020, 10, 4996-5009.	1.7	47
92	Application of modified red mud in environmentally-benign applications: A review paper. Environmental Engineering Research, 2020, 25, 795-806.	1.5	47
93	Pyrolytic-deoxygenation of triglycerides model compound and non-edible oil to hydrocarbons over SiO 2 -Al 2 O 3 supported NiO-CaO catalysts. Journal of Analytical and Applied Pyrolysis, 2018, 129, 221-230.	2.6	46
94	Production of green diesel from catalytic deoxygenation of chicken fat oil over a series binary metal oxide-supported MWCNTs. RSC Advances, 2020, 10, 626-642.	1.7	46
95	Production of biodiesel from palm fatty acid distillate using sulfonated-glucose solid acid catalyst: Characterization and optimization. Chinese Journal of Chemical Engineering, 2015, 23, 1857-1864.	1.7	45
96	Catalytic deoxygenation of triglycerides to green diesel over modified CaO-based catalysts. RSC Advances, 2017, 7, 46445-46460.	1.7	45
97	Structural, thermal, and optical analysis of zinc boro-aluminosilicate glasses containing different alkali and alkaline modifier ions. Journal of Non-Crystalline Solids, 2017, 456, 55-63.	1.5	45
98	Extraction and Characterization of \hat{I}^3 -Alumina from Waste Aluminium Dross. Waste and Biomass Valorization, 2017, 8, 321-327.	1.8	45
99	Cold flow and fuel properties of methyl oleate and palm-oil methyl ester blends. Fuel, 2015, 160, 238-244.	3.4	44
100	Heterogeneous calcium-based bimetallic oxide catalyzed transesterification of Elaeis guineensis derived triglycerides for biodiesel production. Energy Conversion and Management, 2017, 141, 20-27.	4.4	43
101	Synthesis of carbonaceous solid acid magnetic catalyst from empty fruit bunch for esterification of palm fatty acid distillate (PFAD). Energy Conversion and Management, 2019, 195, 480-491.	4.4	43
102	Supermagnetic Nano-Bifunctional Catalyst from Rice Husk: Synthesis, Characterization and Application for Conversion of Used Cooking Oil to Biodiesel. Catalysts, 2020, 10, 225.	1.6	43
103	Promoting deoxygenation of triglycerides via Co-Ca loaded SiO 2 -Al 2 O 3 catalyst. Applied Catalysis A: General, 2018, 552, 38-48.	2.2	42
104	Structural and optical studies of Er 3+ -doped alkali/alkaline oxide containing zinc boro-aluminosilicate glasses for 1.5Âμm optical amplifier applications. Optical Materials, 2017, 69, 401-419.	1.7	41
105	Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses. Results in Physics, 2017, 7, 166-174.	2.0	41
106	Waterless purification using oil palm biomass-derived bioadsorbent improved the quality of biodiesel from waste cooking oil. Journal of Cleaner Production, 2017, 165, 262-272.	4.6	41
107	Hydrogen production via CO2 dry reforming of glycerol over Re Ni/CaO catalysts. International Journal of Hydrogen Energy, 2019, 44, 20857-20871.	3.8	41
108	Hydrogen production from glycerol dry reforming over Ag-promoted Ni/Al2O3. International Journal of Hydrogen Energy, 2019, 44, 213-225.	3.8	41

#	Article	IF	CITATIONS
109	Biodiesel production via simultaneous esterification and transesterification of chicken fat oil by mesoporous sulfated Ce supported activated carbon. Biomass and Bioenergy, 2020, 141, 105714.	2.9	41
110	Advancement in heterogeneous base catalyzed technology: An efficient production of biodiesel fuels. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	40
111	Reusable gypsum based catalyst for synthesis of glycerol carbonate from glycerol and urea. Applied Catalysis A: General, 2015, 502, 312-319.	2.2	40
112	Efficient and reusable iron-zinc oxide catalyst for oxidative desulfurization of model fuel. Journal of Environmental Chemical Engineering, 2017, 5, 1645-1656.	3.3	39
113	Renewable diesel via solventless and hydrogen-free catalytic deoxygenation of palm fatty acid distillate. Journal of Cleaner Production, 2020, 274, 122850.	4.6	38
114	Investigation of Ce(<scp>iii</scp>) promoter effects on the tri-metallic Pt, Pd, Ni/MgO catalyst in dry-reforming of methane. RSC Advances, 2016, 6, 10372-10384.	1.7	37
115	Subsolidus phase equilibria and electrical properties of pyrochlores in the Bi2O3–CuO–Ta2O5 ternary system. Journal of Alloys and Compounds, 2016, 675, 116-127.	2.8	36
116	Optimization study of SiO 2 -Al 2 O 3 supported bifunctional acid–base NiO-CaO for renewable fuel production using response surface methodology. Energy Conversion and Management, 2017, 141, 325-338.	4.4	36
117	New coumarin and dihydrocinnamic acid derivatives from two malaysian populations of Micromelum minutum. Phytochemistry, 1994, 37, 561-564.	1.4	34
118	Production of methyl esters from waste cooking oil using a heterogeneous biomass-based catalyst. Renewable Energy, 2017, 114, 638-643.	4.3	34
119	Octanoic acid hydrodeoxygenation over bifunctional Ni/Al-SBA-15 catalysts. Catalysis Science and Technology, 2019, 9, 6673-6680.	2.1	34
120	Microwaveâ€Assisted Methyl Ester Production from Palm Fatty Acid Distillate over a Heterogeneous Carbonâ€Based Solid Acid Catalyst. Chemical Engineering and Technology, 2015, 38, 1837-1844.	0.9	33
121	Optimization study of binary metal oxides catalyzed transesterification system for biodiesel production. Chemical Engineering Research and Design, 2015, 94, 430-440.	2.7	33
122	Soulamarin, a New Coumarin from Stem Bark of Calophyllum soulattri. Molecules, 2011, 16, 9721-9727.	1.7	32
123	A new insight to the physical interpretation of activated carbon and iron doped carbon material: Sorption affinity towards organic dye. Bioresource Technology, 2014, 160, 52-56.	4.8	32
124	Sucrose-derived catalytic biodiesel synthesis from low cost palm fatty acid distillate. Chemical Engineering Research and Design, 2015, 95, 126-135.	2.7	32
125	Efficient reaction for biodiesel manufacturing using bi-functional oxide catalyst. Catalysis Communications, 2021, 149, 106201.	1.6	32
126	Enhancing the sorption performance of surfactant-assisted CaO nanoparticles. RSC Advances, 2014, 4, 65127-65136.	1.7	31

#	Article	IF	CITATIONS
127	Synthesis of Biodiesel through Catalytic Transesterification of Various Feedstocks using Fast Solvothermal Technology: A Critical Review. Catalysis Reviews - Science and Engineering, 2015, 57, 407-435.	5.7	31
128	Pyrolytic–deoxygenation of triglyceride via natural waste shell derived Ca(OH) 2 nanocatalyst. Journal of Analytical and Applied Pyrolysis, 2016, 117, 46-55.	2.6	31
129	Synthesis of char-based acidic catalyst for methanolysis of waste cooking oil: An insight into a possible valorization pathway for the solid by-product of gasification. Energy Conversion and Management, 2018, 158, 186-192.	4.4	31
130	Production of methyl esters from waste cooking oil and chicken fat oil via simultaneous esterification and transesterification using acid catalyst. Energy Conversion and Management, 2020, 226, 113366.	4.4	31
131	A new cytotoxic carbazole alkaloid fromClausena excavata. Natural Product Research, 2007, 21, 810-813.	1.0	30
132	Enhancement of hydrogen production by secondary metal oxide dopants onÂNiO/CaO material for catalytic gasification of empty palm fruit bunches. Energy, 2012, 47, 158-165.	4.5	30
133	Screening of solid base catalysts on palm oil based biolubricant synthesis. Journal of Cleaner Production, 2017, 148, 441-451.	4.6	30
134	Effective biodiesel synthesis from palm fatty acid distillate (PFAD) using carbon-based solid acid catalyst derived glycerol. Renewable Energy, 2019, 142, 658-667.	4.3	30
135	New Lithiated NASICON-Type Li[sub 2]Ni[sub 2](MoO[sub 4])[sub 3] for Rechargeable Lithium Batteries. Electrochemical and Solid-State Letters, 2004, 7, A242.	2.2	29
136	SiO2-Rich Sugar Cane Bagasse Ash Catalyst for Transesterification of Palm Oil. Bioenergy Research, 2020, 13, 986-997.	2.2	29
137	Functional novel ligand based palladium(II) separation and recovery from e-waste using solvent-ligand approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127767.	2.3	29
138	Biodiesel synthesis from photoautotrophic cultivated oleoginous microalgae using a sand dollar catalyst. RSC Advances, 2015, 5, 47140-47152.	1.7	28
139	Influence of Ce ₂ O ₃ and CeO ₂ promoters on Pd/MgO catalysts in the dry-reforming of methane. RSC Advances, 2015, 5, 81739-81752.	1.7	28
140	Esterification of high free fatty acids in supercritical methanol using sulfated angel wing shells as catalyst. Journal of Supercritical Fluids, 2017, 124, 1-9.	1.6	28
141	Copper-dolomite as effective catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 34-51.	2.7	28
142	Synthesis and characterization of sulfonated carbon catalysts derived from biomass waste and its evaluation in glycerol acetylation. Biomass Conversion and Biorefinery, 2022, 12, 2045-2060.	2.9	28
143	A Short Review on Catalyst, Feedstock, Modernised Process, Current State and Challenges on Biodiesel Production. Catalysts, 2021, 11, 1261.	1.6	28
144	The effect of particle size of CaO and MgO as catalysts for gasification of oil palm empty fruit bunch to produce hydrogen. International Journal of Hydrogen Energy, 2012, 37, 3639-3644.	3.8	27

#	Article	IF	CITATIONS
145	Microwave-assisted Biodiesel Production by Esterification of Palm Fatty Acid Distillate. Journal of Oleo Science, 2014, 63, 849-855.	0.6	27
146	A new furanoxanthone from the stem bark of <i>Calophyllum inophyllum</i> . Journal of Asian Natural Products Research, 2011, 13, 956-960.	0.7	26
147	Thermal behavior of lignocellulosic materials under aerobic/anaerobic environments. International Journal of Hydrogen Energy, 2013, 38, 16011-16019.	3.8	26
148	Hydrogen production from wood gasification promoted by waste eggshell catalyst. International Journal of Energy Research, 2013, 37, 1866-1871.	2.2	26
149	Cytotoxic effect of γ-sitosterol from Kejibeling (Strobilanthes crispus) and its mechanism of action towards c-myc gene expression and apoptotic pathway. Medical Journal of Indonesia, 2015, 23, 203-8.	0.2	26
150	Screening of modified CaO-based catalysts with a series of dopants for the supercritical water gasification of empty palm fruit bunches to produce hydrogen. RSC Advances, 2015, 5, 36798-36808.	1.7	26
151	Bio-oil production via catalytic solvolysis of biomass. RSC Advances, 2017, 7, 7820-7830.	1.7	26
152	A Study of theÂKinetics and Mechanism of the Adsorption and Anaerobic Partial Oxidation of n-Butane over a Vanadyl Pyrophosphate Catalyst. Journal of Catalysis, 2000, 189, 253-262.	3.1	25
153	Preparation of Vanadium Phosphate Catalysts from VOPO4·Â2H2O: Effect of Microwave Irradiation on Morphology and Catalytic Property. Catalysis Letters, 2007, 119, 64-71.	1.4	25
154	High Surface Area Vanadium Phosphate Catalysts for <i>n</i> Butane Oxidation. Industrial & Engineering Chemistry Research, 2009, 48, 7517-7528.	1.8	25
155	Optimization and mechanistic study of the liquid-phase oxidation of naphthalene over biomass-derived iron catalyst. Chemical Engineering Journal, 2014, 252, 382-392.	6.6	25
156	Synthesis of Ferric–Manganese Doped Tungstated Zirconia Nanoparticles as Heterogeneous Solid Superacid Catalyst for Biodiesel Production From Waste Cooking Oil. International Journal of Green Energy, 2015, 12, 987-994.	2.1	25
157	CO ₂ Reforming of Methane over Ni/MgO Catalysts Promoted with Zr and La Oxides. ChemistrySelect, 2018, 3, 816-827.	0.7	25
158	Recent advancements and opportunities of decorated graphitic carbon nitride toward solar fuel production and beyond. Sustainable Energy and Fuels, 2021, 5, 4457-4511.	2.5	25
159	High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane. PLoS ONE, 2016, 11, e0145862.	1.1	25
160	Influence of Rare-Earth and Bimetallic Promoters on Various VPO Catalysts for Partial Oxidation of n-Butane. Catalysis Letters, 2009, 130, 504-516.	1.4	24
161	Synthesis of bifunctional nanocatalyst from waste palm kernel shell and its application for biodiesel production. RSC Advances, 2020, 10, 27183-27193.	1.7	24
162	Synthesis and Electrical Properties of Znâ€substituted Bismuth Copper Tantalate Pyrochlores. International Journal of Applied Ceramic Technology, 2016, 13, 718-725.	1.1	23

#	Article	IF	CITATIONS
163	Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation. Chemical Engineering Journal, 2009, 155, 514-522.	6.6	22
164	Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process. Journal of Energy, 2013, 2013, 1-8.	1.4	22
165	Heterogeneous catalysis of transesterification of jatropha curcas oil over calcium–cerium bimetallic oxide catalyst. RSC Advances, 2014, 4, 48836-48847.	1.7	22
166	Catalytic deoxygenation of triolein to green fuel over mesoporous TiO2 aided by in situ hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 11605-11614.	3.8	22
167	Progress on Modified Calcium Oxide Derived Waste-Shell Catalysts for Biodiesel Production. Catalysts, 2021, 11, 194.	1.6	22
168	Pyranoxanthones from Mesua ferrea. Molecules, 2011, 16, 5647-5654.	1.7	21
169	Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles. International Journal of Nanomedicine, 2015, 10, 765.	3.3	21
170	Glycerolysis of palm fatty acid distillate for biodiesel feedstock under different reactor conditions. Fuel, 2016, 174, 133-139.	3.4	21
171	Photocatalytic degradation of cationic dye simulated wastewater using four radiation sources, UVA, UVB, UVC and solar lamp of identical power output. Desalination and Water Treatment, 2016, 57, 7976-7987.	1.0	21
172	Synthesis of MnO-NiO-SO 4 â^'2 /ZrO 2 solid acid catalyst for methyl ester production from palm fatty acid distillate. Energy Conversion and Management, 2017, 139, 166-174.	4.4	21
173	Technological Advancement for Efficiency Enhancement of Biodiesel and Residual Glycerol Refining: A Mini Review. Processes, 2021, 9, 1198.	1.3	21
174	H2-rich syngas from glycerol dry reforming over Ni-based catalysts supported on alumina from aluminum dross. International Journal of Hydrogen Energy, 2021, 46, 30959-30975.	3.8	21
175	Catalytic deoxygenation of waste cooking oil utilizing nickel oxide catalysts over various supports to produce renewable diesel fuel. Biomass and Bioenergy, 2021, 154, 106248.	2.9	21
176	An Optimization Study for Transesterification of Palm Oil using Response Surface Methodology (RSM). Sains Malaysiana, 2015, 44, 281-290.	0.3	21
177	Green Biofuel Production via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 2018, 13, 489-501.	0.5	21
178	Bismuth-Modified Vanadyl Pyrophosphate Catalysts. Catalysis Letters, 2003, 89, 87-93.	1.4	20
179	Mucigerin, a new coumarin from Calophyllum mucigerum (Guttiferae). Natural Product Research, 2004, 18, 123-128.	1.0	20
180	Influence of Heterogeneous Catalysts and Reaction Parameters on the Acetylation of Glycerol to Acetin: A Review. Applied Sciences (Switzerland), 2020, 10, 7155.	1.3	20

#	Article	IF	CITATIONS
181	Development of bimetallic nickel-based catalysts supported on activated carbon for green fuel production. RSC Advances, 2020, 10, 37218-37232.	1.7	20
182	Application of Plasmonic Metal Nanoparticles in TiO2-SiO2 Composite as an Efficient Solar-Activated Photocatalyst: A Review Paper. Frontiers in Chemistry, 2020, 8, 568063.	1.8	20
183	Transesterification of <i>Jatropha Curcas</i> Oil to Biodiesel by Using Short Necked Clam (Orbicularia Orbiculata) Shell Derived Catalyst. Energy Exploration and Exploitation, 2012, 30, 853-866.	1.1	19
184	Green nano-catalyst for methanolysis of non-edible Jatropha oil. Energy Conversion and Management, 2014, 87, 618-627.	4.4	19
185	Synthesis of Waste Cooking Oil Based Biodiesel via Ferric-Manganese Promoted Molybdenum Oxide / Zirconia Nanoparticle Solid acid Catalyst: Influence of Ferric and Manganese Dopants. Journal of Oleo Science, 2015, 64, 505-514.	0.6	19
186	Free solvent oxidation of molecular benzyl alcohol by newly synthesized AuPd/titania catalysts. Inorganic Chemistry Communication, 2019, 107, 107471.	1.8	19
187	Enhanced biodiesel synthesis from palm fatty acid distillate and modified sulfonated glucose catalyst via an oscillation flow reactor system. Journal of Environmental Chemical Engineering, 2019, 7, 102993.	3.3	19
188	Post-functionalization of polymeric mesoporous C@Zn core–shell spheres used for methyl ester production. Renewable Energy, 2016, 99, 1235-1243.	4.3	18
189	Versatile boiler ash containing potassium silicate for the synthesis of organic carbonates. RSC Advances, 2016, 6, 34877-34884.	1.7	18
190	Optimization and Characterization of Mesoporous Sulfonated Carbon Catalyst and Its Application in Modeling and Optimization of Acetin Production. Molecules, 2020, 25, 5221.	1.7	18
191	Nanomaterials: An Overview of Nanorods Synthesis and Optimization. , 0, , .		18
192	Enhanced CO ₂ methanation at mild temperature on Ni/zeolite from kaolin: effect of metal–support interface. RSC Advances, 2021, 11, 16376-16387.	1.7	18
193	Development of a procedure for spherical alginate–boehmite particle preparation. Advanced Powder Technology, 2013, 24, 1119-1125.	2.0	17
194	Facile Recoverable and Reusable Macroscopic Alumina Supported Ni-based Catalyst for Efficient Hydrogen Production. Scientific Reports, 2019, 9, 16358.	1.6	16
195	Enhanced dry reforming toward hydrogen production over Ni/CeO2SiO2 via different catalyst synthesis routes. International Journal of Hydrogen Energy, 2019, 44, 20738-20750.	3.8	16
196	Hierarchical HZSM-5 for Catalytic Cracking of Oleic Acid to Biofuels. Nanomaterials, 2021, 11, 747.	1.9	16
197	Catalytic deoxygenation by H2-free single-step conversion of free fatty acid feedstock over a Co-Ag carbon-based catalyst for green diesel production. Journal of Analytical and Applied Pyrolysis, 2021, 160, 105334.	2.6	16
198	Photocatalytic treatment of detergent-contaminated wastewater: A short review on current progress. Korean Journal of Chemical Engineering, 2022, 39, 484-498.	1.2	16

#	Article	IF	CITATIONS
199	Preparation of Activated Carbon from Walnut Shell Doped La and Ca Catalyst for Biodiesel Production from Waste Cooking Oil. Materials Science Forum, 0, 840, 348-352.	0.3	15
200	Comparative study between supported and doped MgO catalysts in supercritical water gasification for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 3690-3701.	3.8	15
201	Title is missing!. Catalysis Letters, 2001, 74, 99-104.	1.4	14
202	Synthesis of Vanadium Phosphate Catalysts by Hydrothermal Method for Selective Oxidation of n-butane to Maleic Anhydride. Catalysis Letters, 2006, 106, 177-181.	1.4	14
203	Synthesis, structural and electrical properties of novel pyrochlores in the Bi2O3–CuO–Ta2O5 ternary system. Ceramics International, 2012, 38, 4253-4261.	2.3	14
204	Viable Glycerol Carbonate Synthesis Through Direct Crude Glycerol Utilization from Biodiesel Industry. Waste and Biomass Valorization, 2017, 8, 1049-1059.	1.8	14
205	Appraisal of Sulphonation Processes to Synthesize Palm Waste Biochar Catalysts for the Esterification of Palm Fatty Acid Distillate. Catalysts, 2019, 9, 184.	1.6	14
206	In-situ operando and ex-situ study on light hydrocarbon-like-diesel and catalyst deactivation kinetic and mechanism study during deoxygenation of sludge oil. Chemical Engineering Journal, 2022, 429, 132206.	6.6	14
207	Title is missing!. Catalysis Letters, 1997, 48, 105-110.	1.4	13
208	Sulfonated SnO ₂ nanocatalysts <i>via</i> a self-propagating combustion method for esterification of palm fatty acid distillate. RSC Advances, 2020, 10, 29187-29201.	1.7	13
209	Combustion and Emission Performance of CO/NO _x /SO _x for Green Diesel Blends in a Swirl Burner. ACS Omega, 2021, 6, 408-415.	1.6	13
210	The effect of structure directing agents on micro/mesopore structures of aluminosilicates from Indonesian kaolin as deoxygenation catalysts. Microporous and Mesoporous Materials, 2021, 315, 110917.	2.2	13
211	A promoter effect on hydrodeoxygenation reactions of oleic acid by zeolite beta catalysts. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105044.	2.6	13
212	Lewis acid Ni/Al-MCM-41 catalysts for H ₂ -free deoxygenation of <i>Reutealis trisperma</i> oil to biofuels. RSC Advances, 2021, 11, 21885-21896.	1.7	13
213	Title is missing!. Catalysis Letters, 1997, 46, 273-277.	1.4	12
214	Synthesis and characterisation of vanadyl pyrophosphate catalysts via vanadyl hydrogen phosphate sesquihydrate precursor. Catalysis Today, 2004, 93-95, 715-722.	2.2	12
215	Innovative process for the synthesis of vanadyl pyrophosphate as a highly selective catalyst for n-butane oxidation. Chemical Engineering Journal, 2010, 165, 328-335.	6.6	12
216	Catalytic Steam Reforming of Glycerol Over Cerium and Palladium-Based Catalysts for Hydrogen Production. Journal of Fuel Cell Science and Technology, 2013, 10, .	0.8	12

#	Article	IF	CITATIONS
217	Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles. International Journal of Nanomedicine, 2015, 10, 5739.	3.3	12
218	Inducing G2/M Cell Cycle Arrest and Apoptosis through Generation Reactive Oxygen Species (ROS)-Mediated Mitochondria Pathway in HT-29 Cells by Dentatin (DEN) and Dentatin Incorporated in Hydroxypropyl-β-Cyclodextrin (DEN-HPβCD). International Journal of Molecular Sciences, 2016, 17, 1653.	1.8	12
219	Multiple-objective optimization in green fuel production via catalytic deoxygenation reaction with NiO-dolomite catalyst. Fuel, 2022, 308, 122041.	3.4	12
220	Characterisation and Cytotoxicity Assessment of UV Absorbers-Intercalated Zinc/Aluminium-Layered Double Hydroxides on Dermal Fibroblast Cells. Science of Advanced Materials, 2014, 6, 648-658.	0.1	12
221	Novel Synthesis Techniques for Preparation of Ultrahigh-Crystalline Vanadyl Pyrophosphate as a Highly Selective Catalyst for <i>n</i> -Butane Oxidation. Industrial & Engineering Chemistry Research, 2010, 49, 2135-2143.	1.8	11
222	Hydrogen Production from Dry-Reforming of Biogas over Pt/Mg1-xNixO Catalysts. Energy Procedia, 2015, 79, 18-25.	1.8	11
223	Nanolayered composite with enhanced ultraviolet ray absorption properties from simultaneous intercalation of sunscreen molecules. International Journal of Nanomedicine, 2018, Volume 13, 6359-6374.	3.3	11
224	Catalytic Supercritical Water Gasification of Empty Palm Fruit Bunches Using ZnO-Doped Ni–CaO Catalyst for Hydrogen Production. Bioenergy Research, 2019, 12, 1066-1076.	2.2	11
225	Catalytic decomposition of methane into hydrogen and carbon nanotubes over mesostructured silica nanoparticle-supported nickel catalysts. Journal of Porous Materials, 2020, 27, 369-382.	1.3	11
226	Promoting dry reforming of methane <i>via</i> bifunctional NiO/dolomite catalysts for production of hydrogen-rich syngas. RSC Advances, 2021, 11, 6667-6681.	1.7	11
227	Single-step catalytic deoxygenation-cracking of tung oil to bio-jet fuel over CoW/silica-alumina catalysts. Fuel, 2022, 325, 124917.	3.4	11
228	Optimization of UV Absorptivity of Layered Double Hydroxide by Intercalating Organic UV-Absorbent Molecules. Journal of Biomedical Nanotechnology, 2014, 10, 1490-1500.	0.5	10
229	Studies on the rheological properties of aluminium oxihydroxide (boehmite) colloidal suspension. Ceramics International, 2014, 40, 3779-3783.	2.3	10
230	Optimization of simultaneous production of waste cooking oil based-biodiesel using iron-manganese doped zirconia-supported molybdenum oxide nanoparticles catalyst. Journal of Renewable and Sustainable Energy, 2016, 8, 033101.	0.8	10
231	Characterization, drug release profile and cytotoxicity of Dentatin-Hydroxypropyl-β-Cyclodextrin complex. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 167-178.	0.9	10
232	Effect of La2O3 as a Promoter on the Pt,Pd,Ni/MgO Catalyst in Dry Reforming of Methane Reaction. Catalysts, 2020, 10, 750.	1.6	10
233	Optimization of Carbon Nanotube-Coated Monolith by Direct Liquid Injection Chemical Vapor Deposition Based on Taguchi Method. Catalysts, 2020, 10, 67.	1.6	10
234	A study of the nature of the oxidant in V2O5–MoO3/Al2O3 catalyst. Chemical Engineering Science, 2001, 56, 5787-5792.	1.9	9

#	Article	IF	CITATIONS
235	Seeded Growth Route to Noble Calcium Carbonate Nanocrystal. PLoS ONE, 2015, 10, e0144805.	1.1	9
236	Sonolysis, Photolysis, and Sequential Sonophotolysis for the Degradation of 2,4,6-Trichlorophenol: The Effect of Solution Concentration. Chemical Engineering Communications, 2015, 202, 1061-1068.	1.5	9
237	Ferric-manganese doped sulphated zirconia nanoparticles catalyst for single-step biodiesel production from waste cooking oil: Characterization and optimization. International Journal of Green Energy, 2016, 13, 1305-1313.	2.1	9
238	Basic properties of methyl palmitate-diesel blends. Fuel, 2017, 193, 1-6.	3.4	9
239	Degradation of enriched biodiesel under different storage conditions. Biofuels, 2017, 8, 181-186.	1.4	9
240	Catalytic supercritical water gasification of oil palm frond biomass using nanosized MgO doped Zn catalysts. Journal of Supercritical Fluids, 2019, 154, 104610.	1.6	9
241	Enhancement of CO2 Reforming of CH4 Reaction Using Ni,Pd,Pt/Mg1â^'xCex4+O and Ni/Mg1â^'xCex4+O Catalysts. Catalysts, 2020, 10, 1240.	1.6	9
242	One-pot decarboxylation and decarbonylation reaction of waste cooking oil over activated carbon supported nickel-zinc catalyst into diesel-like fuels. Journal of Analytical and Applied Pyrolysis, 2022, 164, 105505.	2.6	9
243	A New Pyranoxanthone from Calophyllum soulattri. Molecules, 2011, 16, 3999-4004.	1.7	8
244	A Novel Cyclodione Coumarin from the Stem Bark of Mesua beccariana. Molecules, 2011, 16, 7249-7255.	1.7	8
245	Investigation of the Process Conditions for Hydrogen Production by Steam Reforming of Glycerol over Ni/Al2O3 Catalyst Using Response Surface Methodology (RSM). Materials, 2014, 7, 2257-2272.	1.3	8
246	Improved sinterability and conductivity enhancement of 10-mol% calcium-doped ceria using different fuel-aided combustion reactions and its structural characterisation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 185, 26-36.	1.7	8
247	Biodiesel Synthesis Catalyzed by Transition Metal Oxides: Ferric-Manganese Doped Tungstated/Molybdena Nanoparticle Catalyst. Journal of Oleo Science, 2015, 64, 91-99.	0.6	8
248	Anticancer effect of dentatin and dentatin-hydroxypropyl-β-cyclodextrin complex on human colon cancer (HT-29) cell line. Drug Design, Development and Therapy, 2017, Volume 11, 3309-3319.	2.0	8
249	Ni, Zn and Fe hydrotalcite-like catalysts for catalytic biomass compound into green biofuel. Pure and Applied Chemistry, 2020, 92, 587-600.	0.9	8
250	Anticancer palladium-doped magnesia nanoparticles: synthesis, characterization, and <i>in vitro</i> study. Nanomedicine, 2020, 15, 547-561.	1.7	8
251	Hydrodeoxygenation of fatty acid over La-modified HZSM5 for premium quality renewable diesel production. Journal of Analytical and Applied Pyrolysis, 2022, 161, 105406.	2.6	8
252	Catalytically active metal oxides studies for the conversion technology of carboxylic acids and bioresource based fatty acids to ketones: A review. Bioresource Technology Reports, 2022, 17, 100988.	1.5	8

#	Article	IF	CITATIONS
253	Production of green diesel via hydrogen-free and solventless deoxygenation reaction of waste cooking oil. Journal of Cleaner Production, 2022, 366, 132971.	4.6	8
254	Modification of Malaysian dolomite using mechanochemical treatment via different media for oil palm fronds gasification. International Journal of Energy Research, 2014, 38, 1008-1015.	2.2	7
255	Effects of Bi and Ni on the properties of a vanadium phosphorus oxide catalyst. Chinese Journal of Catalysis, 2014, 35, 270-276.	6.9	7
256	Structural and catalytic studies of Mg1-xNixO nanomaterials for gasification of biomass in supercritical water for H2-rich syngas production. International Journal of Hydrogen Energy, 2020, 45, 33218-33234.	3.8	7
257	Facile synthesis of nanosized La/ZrO2 catalysts for ketonization of free fatty acid and biomass feedstocks. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 217-228.	2.7	7
258	Insight into <scp> CO ₂ </scp> reforming of <scp> CH ₄ </scp> via <scp>NiO</scp> /dolomite catalysts for production of <scp> H ₂ </scp> rich syngas. International Journal of Energy Research, 2021, 45, 15463-15480.	2.2	7
259	Assessment on the Effect of Sulfuric Acid Concentration on Physicochemical Properties of Sulfated-Titania Catalyst and Glycerol Acetylation Performance. Catalysts, 2021, 11, 1542.	1.6	6
260	Gene Expression Profiling of p53 +/â^' Knockout and Wild-type Mice Following Diethylstilbestrol Administration. IUBMB Life, 2004, 56, 409-416.	1.5	5
261	Effect of calcination temperatures on physicochemical properties of vanadium–antimony mixed oxide catalysts. Catalysis Today, 2004, 93-95, 631-637.	2.2	5
262	Activation of VOHPO4 · 0.5H2O in Propane/Air Mixture: Effect on Structural, Morphological, Oxidant's Behaviour and Catalytic Property of (VO)2P2O7 Catalysts for Propane Oxidation. Catalysis Letters, 2005, 105, 103-110.	1.4	5
263	Synthesis and Characterization of Ni-Doped Vanadium Phosphorus Oxide Catalysts. Chinese Journal of Catalysis, 2007, 28, 1037-1040.	6.9	5
264	Effect of varying reflux durations on the physico-chemical and catalytic performance of vanadium phosphate catalysts synthesized via vanadyl hydrogen phosphate sesquihydrate. Applied Catalysis A: General, 2012, 415-416, 53-58.	2.2	5
265	CO2 capture on NiO supported imidazolium-based ionic liquid. AIP Conference Proceedings, 2017, , .	0.3	5
266	Production of green biofuel by using a goat manure supported Ni–Al hydrotalcite catalysed deoxygenation process. RSC Advances, 2019, 9, 1642-1652.	1.7	5
267	Biofuels: Past, Present, Future. Green Energy and Technology, 2020, , 489-504.	0.4	5
268	K2O Doped Dolomite as Heterogeneous Catalyst for Fatty Acid Methyl Ester Production from Palm Oil. Catalysts, 2020, 10, 791.	1.6	5
269	Evaluation of NiO/TALC Catalytic performance in carbon dioxide reforming of methane. Journal of the Taiwan Institute of Chemical Engineers, 2021, 122, 106-117.	2.7	5
270	Sustainable Production of Bioenergy. Green Energy and Technology, 2020, , 541-561.	0.4	5

#	Article	IF	CITATIONS
271	Heterogeneous Photocatalytic Chlorination of Methylene Blue Using a Newly Synthesized TiO2-SiO2 Photocatalyst. Catalysts, 2022, 12, 156.	1.6	5
272	Synthesis of palm-based ethylhexyl ester as a synthetic base oil for drilling fluids using chemical transesterification. Grasas Y Aceites, 2014, 65, e005.	0.3	4
273	Phase equilibria in the Bi2O3-CuO-Nb2O5 ternary system. Ceramics International, 2017, 43, 4930-4936.	2.3	4
274	Solid-phase and precipitation synthesis of Ti-pyrophosphate for the catalytic oxydehydrogenation of n-butane. Comptes Rendus Chimie, 2017, 20, 1037-1046.	0.2	4
275	Modified local carbonate mineral as deoxygenated catalyst for biofuel production via catalytic pyrolysis of waste cooking oil. AIP Conference Proceedings, 2018, , .	0.3	4
276	Catalytic conversion of waste cooking oil into biodiesel using functionally advanced recyclable iron-impregnated activated carbon materials. Journal of Dispersion Science and Technology, 2020, , 1-16.	1.3	4
277	The Evaluation on Three Types of Malaysian Dolomites as a Primary Catalyst in Gasification Reaction of EFB and Tar Cracking Efficiency. Frontiers in Energy Research, 2020, 8, .	1.2	4
278	Selective Deoxygenation of Sludge Palm Oil into Diesel Range Fuel over Mn-Mo Supported on Activated Carbon Catalyst. Catalysts, 2022, 12, 566.	1.6	4
279	Chemoselective decarboxylation of ceiba oil to diesel-range alkanes over a red mud based catalyst under H ₂ -free conditions. RSC Advances, 2022, 12, 16903-16917.	1.7	4
280	The effect of cobalt doping on vanadyl pyrophosphate catalyst. Reaction Kinetics and Catalysis Letters, 2003, 78, 25-34.	0.6	3
281	Physico-chemicals and catalytic properties of manganese-promoted vanadium phosphate (VPO) catalyst. Reaction Kinetics and Catalysis Letters, 2007, 92, 275-284.	0.6	3
282	Syngas production from the \$\$hbox {CO}_{2}\$\$ CO 2 reforming of methane over \$\$hbox {Co}/hbox {Mg}_{1-mathrm{x}}hbox {Ni}_{mathrm{x}}hbox {O}\$\$. Journal of Chemical Sciences, 2017, 129, 1781-1786.	0.7	3
283	Appraisal of Biodiesel Prepared Via Acid Catalysis from Palm Fatty Acid Distillate. Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43, 2205-2210.	0.7	3
284	Nanostructured of Vanadium Phosphorus Oxide (Vpo) Catalyst Prepared by Sonochemical Treatment. Advanced Materials Research, 0, 364, 25-29.	0.3	2
285	The Effect of CeO ₂ and Fe ₂ O ₃ Dopants on Ni/ Alumina Based Catalyst for Dry Reforming of Methane to Hydrogen. Advanced Materials Research, 2011, 364, 519-523.	0.3	2
286	Biodiesel Production via Transesterification of Nannochloropsis oculata microalga's Oil Using Calcium Methoxide as Heterogeneous Catalyst. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 995-999.	0.2	2
287	General Concepts for Catalytic Synthesis of Biodiesel from Waste Cooking Oil. Green Energy and Technology, 2018, , 429-455.	0.4	2
288	Characterization of Mn-Doped Vanadium Phosphorus Oxide (VPO) Catalyst: Effect of Ball Milling. Eurasian Chemico-Technological Journal, 2005, 7, 73.	0.3	2

#	ARTICLE	IF	CITATIONS
289	Environment-friendly deoxygenation of non-edible Ceiba oil to liquid hydrocarbon biofuel: process parameters and optimization study. Environmental Science and Pollution Research, 2022, 29, 51143-51152.	2.7	2
290	Tmperature programmed techniques study on the nature of the oxidant in/on V2O5catalyst ÂÂ. Reaction Kinetics and Catalysis Letters, 2006, 89, 9-19.	0.6	1
291	Mechanochemical-treated Cr-promoted Vanadyl Pyrophosphate Catalyst for n-Butane Oxidation to Maleic Anhydride. Petroleum Science and Technology, 2008, 26, 734-741.	0.7	1
292	Effect of Sonochemical Duration on the Synthesis of Vanadium Oxide Nanowires. Advanced Materials Research, 0, 364, 515-518.	0.3	1
293	Production of Biodiesel from Non-Edible <i>Jatropha curcas </i> Oil via Transesterification Using Nd ₂ O ₃ -La ₂ O ₃ Catalyst, Advanced Materials Research. 0. 620. 335-339.	0.3	1
294	Tin Oxide Doped on Activated Dolomites as Efficient Catalyst for Biodiesel Production. Advanced Materials Research, 0, 620, 378-383.	0.3	1
295	Effect of Different Calcination Duration on Physicochemical Properties of Vanadium Phosphate Catalysts. E-Journal of Chemistry, 2012, 9, 1440-1448.	0.4	1
296	Binary metal-doped methoxide catalyst for biodiesel production from palm stearin. Research on Chemical Intermediates, 2016, 42, 1943-1963.	1.3	1
297	Hydrodeoxygenation of oleic acid for effective diesel-like hydrocarbon production using zeolite-based catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 1069.	0.8	1
298	Synthesis of Carbide Lime Waste Derived Base Catalyst (KF/CLW-Fe3O4) for Methyl Ester Production: An Optimization Study. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 127-134.	0.5	1
299	Hydrogen Production from Rice Straw Gasification over Modified-Limestone Catalyst. Advanced Materials Research, 2012, 550-553, 488-492.	0.3	0
300	Influence of Intercalation-Exfoliation-Reduction Technique towards the Physico-Chemical of VPO Catalysts. Journal of Chemistry, 2013, 2013, 1-8.	0.9	0
301	Effects of pH in the incorporation of Mn2+ in Ce1-xMnxO2-x (0.05 ≤ ≤0.25) solid solutions using oxalate co-precipitation technique and its characterizations. Materials Research Society Symposia Proceedings, 2014, 1655, 1.	0.1	0
302	Photocatalytic Hydrogen from Water Over Semiconductors. Green Energy and Technology, 2022, , 175-194.	0.4	0
303	A NEW ELECTRODE WITH POLYANION - (MoO4)3 AS CATHODE FORLITHIUM ION BATTERIES. , 2002, , .		0
304	Efficient W-Mo mixed oxide supported CaO catalyst for the production of biodiesel from high FFA waste cooking oil: Stoichiometric effect. IOP Conference Series: Materials Science and Engineering, 0, 932, 012016.	0.3	0
305	Future Aviation Biofuel, Efficiency and Climate Change. Green Energy and Technology, 2021, , 505-522.	0.4	0