

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4308161/publications.pdf Version: 2024-02-01

ΔΝΟΦΕΛ

#	Article	IF	CITATIONS
1	Abolishing Dopamine D _{2long} /D ₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-Type Histamine H ₂ Receptor Agonists. Journal of Medicinal Chemistry, 2021, 64, 8684-8709.	6.4	8
2	Label-Free Investigations on the G Protein Dependent Signaling Pathways of Histamine Receptors. International Journal of Molecular Sciences, 2021, 22, 9739.	4.1	7
3	Shining light on the histamine H2 receptor: Synthesis of carbamoylguanidine-type agonists as a pharmacological tool to study internalization. Bioorganic and Medicinal Chemistry Letters, 2021, 52, 128388.	2.2	0
4	Specific Engineered G Protein Coupling to Histamine Receptors Revealed from Cellular Assay Experiments and Accelerated Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2021, 22, 10047.	4.1	4
5	A Dynamic, Split-Luciferase-Based Mini-G Protein Sensor to Functionally Characterize Ligands at All Four Histamine Receptor Subtypes. International Journal of Molecular Sciences, 2020, 21, 8440.	4.1	20
6	Structure–Activity Relationships and Computational Investigations into the Development of Potent and Balanced Dual-Acting Butyrylcholinesterase Inhibitors and Human Cannabinoid Receptor 2 Ligands with Pro-Cognitive in Vivo Profiles. Journal of Medicinal Chemistry, 2018, 61, 1646-1663.	6.4	50
7	The First Photochromic Affinity Switch for the Human Cannabinoid Receptor 2. Advanced Therapeutics, 2018, 1, 1700032.	3.2	20
8	Competitive association binding kinetic assays: a new tool to detect two different binding orientations of a ligand to its target protein under distinct conditions?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 595-612.	3.0	5
9	Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands. Handbook of Experimental Pharmacology, 2017, 241, 31-61.	1.8	3
10	Aminobenzimidazoles and Structural Isomers as Templates for Dualâ€Acting Butyrylcholinesterase Inhibitors and <i>h</i> CB ₂ R Ligands To Combat Neurodegenerative Disorders. ChemMedChem, 2016, 11, 1270-1283.	3.2	28
11	Conformational Restriction and Enantioseparation Increase Potency and Selectivity of Cyanoguanidine-Type Histamine H ₄ Receptor Agonists. Journal of Medicinal Chemistry, 2016, 59, 3452-3470.	6.4	9
12	Dibenzo[b , f][1,4]oxazepines and dibenzo[b , e]oxepines: Influence of the chlorine substitution pattern on the pharmacology at the H 1 R, H 4 R, 5-HT 2A R and other selected GPCRs. Pharmacological Research, 2016, 113, 610-625.	7.1	11
13	2,4-Diaminopyrimidines as dual ligands at the histamine H 1 and H 4 receptor—H 1 /H 4 -receptor selectivity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 292-300.	2.2	11
14	Binding pathway of histamine to the hH4R, observed by unconstrained molecular dynamics. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1259-1268.	2.2	12
15	Structure-Dependent Deconjugation of Flavonoid Glucuronides by Human β-Glucuronidase – In Vitro and In Silico Analyses. Planta Medica, 2015, 81, 1182-1189.	1.3	3
16	Synthesis, Biological Evaluation, and Computational Studies of Tri- and Tetracyclic Nitrogen-Bridgehead Compounds as Potent Dual-Acting AChE Inhibitors and <i>h</i> H ₃ Receptor Antagonists. ACS Chemical Neuroscience, 2014, 5, 225-242.	3.5	67
17	Mathematical analysis of the sodium sensitivity of the human histamine H3 receptor. In Silico Pharmacology, 2014, 2, 1.	3.3	16
18	Distinct interactions between the human adrenergic β2 receptor and Gαs—an in silico study. Journal of Molecular Modeling, 2010, 16, 1307-1318.	1.8	6

Andrea

#	Article	IF	CITATIONS
19	In silico analysis of the histaprodifen induced activation pathway of the guinea-pig histamine H1-receptor. Journal of Computer-Aided Molecular Design, 2010, 24, 759-769.	2.9	3
20	Comparison of the pharmacological properties of human and rat histamine H3-receptors. Biochemical Pharmacology, 2010, 80, 1437-1449.	4.4	27
21	Pharmacological Profile of Histaprodifens at Four Recombinant Histamine H ₁ Receptor Species Isoforms. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 60-71.	2.5	47
22	Analysis of the activation mechanism of the guinea-pig Histamine H1-receptor. Journal of Computer-Aided Molecular Design, 2007, 21, 499-509.	2.9	13
23	LigPath: a module for predictive calculation of a ligand's pathway into a receptor-application to the gpH1 - receptor. Journal of Molecular Modeling, 2006, 13, 209-218.	1.8	6
24	Striking differences of action of lisuride stereoisomers at histamine H1 receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 374, 215-222.	3.0	20