
Alfred L George

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4307989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B. Nature Genetics, 1998, 19, 366-370.	9.4	965
2	Mutations in Kir2.1 Cause the Developmental and Episodic Electrical Phenotypes of Andersen's Syndrome. Cell, 2001, 105, 511-519.	13.5	921
3	Molecular mechanism for an inherited cardiac arrhythmia. Nature, 1995, 376, 683-685.	13.7	919
4	Molecular Basis of Charge Movement in Voltage-Gated Sodium Channels. Neuron, 1996, 16, 113-122.	3.8	592
5	Allelic Variants in Long-QT Disease Genes in Patients With Drug-Associated Torsades de Pointes. Circulation, 2002, 105, 1943-1948.	1.6	514
6	Prevalence of Long-QT Syndrome Gene Variants in Sudden Infant Death Syndrome. Circulation, 2007, 115, 361-367.	1.6	472
7	Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). Journal of Clinical Investigation, 2003, 112, 1019-1028.	3.9	454
8	PiggyBac Transposon-mediated Gene Transfer in Human Cells. Molecular Therapy, 2007, 15, 139-145.	3.7	425
9	Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell, 1991, 67, 1021-1027.	13.5	405
10	Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron, 1994, 12, 281-294.	3.8	341
11	Calmodulin Mutations Associated With Recurrent Cardiac Arrest in Infants. Circulation, 2013, 127, 1009-1017.	1.6	331
12	Molecular Basis of an Inherited Epilepsy. Neuron, 2002, 34, 877-884.	3.8	325
13	Inherited disorders of voltage-gated sodium channels. Journal of Clinical Investigation, 2005, 115, 1990-1999.	3.9	325
14	Pre-arrest morbidity and other correlates of survival after in-hospital cardiopulmonary arrest. American Journal of Medicine, 1989, 87, 28-34.	0.6	313
15	Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita). Nature Genetics, 1993, 3, 305-310.	9.4	311
16	Cardiac Sodium Channel (<i>SCN5A</i>) Variants Associated with Atrial Fibrillation. Circulation, 2008, 117, 1927-1935.	1.6	292
17	Impact of Genetics on the ClinicalÂManagementÂof Channelopathies. Journal of the American College of Cardiology, 2013, 62, 169-180.	1.2	271
18	Voltage Sensors in Domains III and IV, but Not I and II, Are Immobilized by Na+ Channel Fast Inactivation. Neuron, 1999, 22, 73-87.	3.8	264

#	Article	IF	CITATIONS
19	Cloning and Characterization of KCC3 and KCC4, New Members of the Cation-Chloride Cotransporter Gene Family. Journal of Biological Chemistry, 1999, 274, 16355-16362.	1.6	261
20	Cardiac Ion Channels. Annual Review of Physiology, 2002, 64, 431-475.	5.6	259
21	Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita. Neuron, 1992, 8, 891-897.	3.8	252
22	Electrocardiographic Features in Andersen-Tawil Syndrome Patients With KCNJ2 Mutations. Circulation, 2005, 111, 2720-2726.	1.6	248
23	The K–Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nature Genetics, 2002, 32, 384-392.	9.4	246
24	<i>NOS1AP</i> Is a Genetic Modifier of the Long-QT Syndrome. Circulation, 2009, 120, 1657-1663.	1.6	241
25	KCNJ2 Mutation Results in Andersen Syndrome with Sex-Specific Cardiac and Skeletal Muscle Phenotypes. American Journal of Human Genetics, 2002, 71, 663-668.	2.6	235
26	Inherited Arrhythmias. Circulation, 2007, 116, 2325-2345.	1.6	235
27	The genetic basis of variability in drug responses. Nature Reviews Drug Discovery, 2002, 1, 37-44.	21.5	233
28	KCNH2 -K897T Is a Genetic Modifier of Latent Congenital Long-QT Syndrome. Circulation, 2005, 112, 1251-1258.	1.6	228
29	Clinical Pharmacogenetics Implementation Consortium Guideline for <i>HLA</i> Genotype and Use of Carbamazepine and Oxcarbazepine: 2017 Update. Clinical Pharmacology and Therapeutics, 2018, 103, 574-581.	2.3	211
30	Progress in Understanding and Treating SCN2A-Mediated Disorders. Trends in Neurosciences, 2018, 41, 442-456.	4.2	210
31	Epilepsy-Associated Dysfunction in the Voltage-Gated Neuronal Sodium Channel SCN1A. Journal of Neuroscience, 2003, 23, 11289-11295.	1.7	196
32	Clinical, Genetic, and Biophysical Characterization of SCN5A Mutations Associated With Atrioventricular Conduction Block. Circulation, 2002, 105, 341-346.	1.6	194
33	The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. Journal of Clinical Investigation, 2008, 118, 2219-29.	3.9	184
34	Cardiac Sodium Channel Dysfunction in Sudden Infant Death Syndrome. Circulation, 2007, 115, 368-376.	1.6	183
35	Structure of KCNE1 and Implications for How It Modulates the KCNQ1 Potassium Channel. Biochemistry, 2008, 47, 7999-8006.	1.2	183
36	Pore-forming segments in voltage-gated chloride channels. Nature, 1997, 390, 529-532.	13.7	181

#	Article	IF	CITATIONS
37	Phenotypic Variability and Unusual Clinical Severity of Congenital Long-QT Syndrome in a Founder Population. Circulation, 2005, 112, 2602-2610.	1.6	179
38	Molecular Cloning of a Human, Hemicholinium-3-Sensitive Choline Transporter. Biochemical and Biophysical Research Communications, 2000, 276, 862-867.	1.0	172
39	Novel Calmodulin Mutations Associated With Congenital Arrhythmia Susceptibility. Circulation: Cardiovascular Genetics, 2014, 7, 466-474.	5.1	165
40	Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy. Proceedings of the United States of America, 2004, 101, 11147-11152.	3.3	160
41	Strain- and age-dependent hippocampal neuron sodium currents correlate with epilepsy severity in Dravet syndrome mice. Neurobiology of Disease, 2014, 65, 1-11.	2.1	155
42	Enhanced Na ⁺ Channel Intermediate Inactivation in Brugada Syndrome. Circulation Research, 2000, 87, E37-43.	2.0	152
43	A Large Candidate Gene Survey Identifies the <i>KCNE1</i> D85N Polymorphism as a Possible Modulator of Drug-Induced Torsades de Pointes. Circulation: Cardiovascular Genetics, 2012, 5, 91-99.	5.1	150
44	Congenital Long-QT Syndrome Caused by a Novel Mutation in a Conserved Acidic Domain of the Cardiac Na ⁺ Channel. Circulation, 1999, 99, 3165-3171.	1.6	143
45	Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca2+ currents and promote proarrhythmic behavior in ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2014, 74, 115-124.	0.9	143
46	Long QT Syndrome–Associated Mutations in Intrauterine Fetal Death. JAMA - Journal of the American Medical Association, 2013, 309, 1473.	3.8	140
47	Striking In Vivo Phenotype of a Disease-Associated Human <i>SCN5A</i> Mutation Producing Minimal Changes in Vitro. Circulation, 2011, 124, 1001-1011.	1.6	137
48	De novo <i>KCNB1</i> mutations in epileptic encephalopathy. Annals of Neurology, 2014, 76, 529-540.	2.8	126
49	Divergent Regulation of Ryanodine Receptor 2 Calcium Release Channels by Arrhythmogenic Human Calmodulin Missense Mutants. Circulation Research, 2014, 114, 1114-1124.	2.0	126
50	Functional analysis of mutations in SLC7A9, and genotype–phenotype correlation in non-Type I cystinuria. Human Molecular Genetics, 2001, 10, 305-316.	1.4	125
51	Expression of multiple KCNE genes in human heart may enable variable modulation of. Journal of Molecular and Cellular Cardiology, 2005, 38, 277-287.	0.9	125
52	Fibrocystin/Polyductin Modulates Renal Tubular Formation by Regulating Polycystin-2 Expression and Function. Journal of the American Society of Nephrology: JASN, 2008, 19, 455-468.	3.0	123
53	Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nature Genetics, 2013, 45, 822-824.	9.4	123
54	An aspartic acid residue important for voltage-dependent gating of human muscle chloride channels. Neuron, 1995, 15, 463-472.	3.8	116

#	Article	IF	CITATIONS
55	Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. European Heart Journal, 2019, 40, 2964-2975.	1.0	116
56	Functional expression and properties of the human skeletal muscle sodium channel. Pflugers Archiv European Journal of Physiology, 1994, 427, 136-142.	1.3	114
57	Molecular Determinants of β ₁ Subunit-Induced Gating Modulation in Voltage-Dependent Na ⁺ Channels. Journal of Neuroscience, 1996, 16, 7117-7127.	1.7	113
58	Elucidating arrhythmogenic mechanisms of long-QT syndrome CALM1-F142L mutation in patient-specific induced pluripotent stem cell-derived cardiomyocytes. Cardiovascular Research, 2017, 113, 531-541.	1.8	110
59	Molecular, functional, and genomic characterization of human KCC2, the neuronal K–Cl cotransporter. Molecular Brain Research, 2002, 103, 91-105.	2.5	106
60	Common Variation in the NOS1AP Gene Is Associated With Drug-Induced QT Prolongation and Ventricular Arrhythmia. Journal of the American College of Cardiology, 2012, 60, 841-850.	1.2	101
61	Activation of Protein Kinase A Modulates Trafficking of the Human Cardiac Sodium Channel in <i>Xenopus</i> Oocytes. Circulation Research, 2000, 87, 33-38.	2.0	99
62	Neural Control of Heart Rate Is an Arrhythmia Risk Modifier in Long QT Syndrome. Journal of the American College of Cardiology, 2008, 51, 920-929.	1.2	99
63	Chapter 2 Myotonia Congenita. Advances in Genetics, 2008, 63, 25-55.	0.8	97
64	Divergent sodium channel defects in familial hemiplegic migraine. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9799-9804.	3.3	97
65	Functional Effects of Protein Kinase C Activation on the Human Cardiac Na sup + Channel. Circulation Research, 1997, 80, 370-376.	2.0	97
66	Subunit Stoichiometry of Human Muscle Chloride Channels. Journal of General Physiology, 1997, 109, 93-104.	0.9	96
67	Cardiac potassium channel dysfunction in sudden infant death syndrome. Journal of Molecular and Cellular Cardiology, 2008, 44, 571-581.	0.9	95
68	Impaired Na _V 1.2 function and reduced cell surface expression in benign familial neonatalâ€infantile seizures. Epilepsia, 2008, 49, 1535-1545.	2.6	92
69	Drug Transporter and Metabolizing Enzyme Gene Variants and Nonnucleoside Reverse-Transcriptase Inhibitor Hepatotoxicity. Clinical Infectious Diseases, 2006, 43, 779-782.	2.9	91
70	Structural Models for the KCNQ1 Voltage-Gated Potassium Channel. Biochemistry, 2007, 46, 14141-14152.	1.2	90
71	Screening of conventional anticonvulsants in a genetic mouse model of epilepsy. Annals of Clinical and Translational Neurology, 2017, 4, 326-339.	1.7	89
72	Gating-Dependent Mechanisms for Flecainide Action in SCN5A -Linked Arrhythmia Syndromes. Circulation, 2001, 104, 1200-1205.	1.6	85

Alfred L George

#	Article	IF	CITATIONS
73	High-Throughput Functional Evaluation of <i>KCNQ1</i> Decrypts Variants of Unknown Significance. Circulation Genomic and Precision Medicine, 2018, 11, e002345.	1.6	85
74	Divergent Biophysical Defects Caused by Mutant Sodium Channels in Dilated Cardiomyopathy With Arrhythmia. Circulation Research, 2008, 102, 364-371.	2.0	84
75	SCN1A splice variants exhibit divergent sensitivity to commonly used antiepileptic drugs. Epilepsia, 2011, 52, 1000-1009.	2.6	84
76	Propranolol Blocks Cardiac and Neuronal Voltage-Gated Sodium Channels. Frontiers in Pharmacology, 2010, 1, 144.	1.6	83
77	Myotonia levior is a chloride channel disorder. Human Molecular Genetics, 1995, 4, 1397-1402.	1.4	80
78	Negligible-Cost and Weekend-Free Chemically Defined Human iPSC Culture. Stem Cell Reports, 2020, 14, 256-270.	2.3	80
79	Functional repair of a mutant chloride channel using a trans-splicing ribozyme. Journal of Clinical Investigation, 2002, 110, 1783-1789.	3.9	80
80	A novel muscle sodium channel mutation causes painful congenital myotonia. Annals of Neurology, 1997, 42, 811-814.	2.8	79
81	Factor V Leiden Protects Against Blood Loss and Transfusion After Cardiac Surgery. Circulation, 2003, 107, 1003-1008.	1.6	79
82	Nonfunctional SCN1A Is Common in Severe Myoclonic Epilepsy of Infancy. Epilepsia, 2006, 47, 1636-1642.	2.6	79
83	Arrhythmogenic Calmodulin Mutations Disrupt Intracellular Cardiomyocyte Ca 2+ Regulation by Distinct Mechanisms. Journal of the American Heart Association, 2014, 3, e000996.	1.6	79
84	Azithromycin Causes a Novel Proarrhythmic Syndrome. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	79
85	Mink Subdomains That Mediate Modulation of and Association with Kvlqt1. Journal of General Physiology, 2000, 116, 379-390.	0.9	78
86	A molecular basis for gating mode transitions in human skeletal muscle Na+channels. FEBS Letters, 1993, 326, 21-24.	1.3	76
87	Genetic susceptibility to acquired long QT syndrome: Pharmacologic challenge in first-degree relatives. Heart Rhythm, 2005, 2, 134-140.	0.3	76
88	Multiplexed transposon-mediated stable gene transfer in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1343-1348.	3.3	76
89	Structural Determinants of Slow Inactivation in Human Cardiac and Skeletal Muscle Sodium Channels. Biophysical Journal, 1999, 77, 1384-1393.	0.2	74
90	Cardiac Na ⁺ Channel Dysfunction in Brugada Syndrome Is Aggravated by β ₁ -Subunit. Circulation, 2000, 101, 54-60.	1.6	74

#	Article	IF	CITATIONS
91	Novel SCN3A variants associated with focal epilepsy in children. Neurobiology of Disease, 2014, 62, 313-322.	2.1	74
92	Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Brain, 2002, 125, 1510-1521.	3.7	73
93	Voltage-gated potassium channel <i>KCNV2</i> (Kv8.2) contributes to epilepsy susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5443-5448.	3.3	72
94	Exome Sequencing Implicates an Increased Burden of Rare Potassium Channel Variants in the Risk of Drug-Induced Long QT Interval Syndrome. Journal of the American College of Cardiology, 2014, 63, 1430-1437.	1.2	70
95	Autonomic Control of Heart Rate and QTÂInterval Variability Influences Arrhythmic Risk in Long QT Syndrome Type 1. Journal of the American College of Cardiology, 2015, 65, 367-374.	1.2	70
96	Natural genetic variation of the cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy. Genome Biology, 2017, 18, 170.	3.8	70
97	Proof of a non-functional muscle chloride channel in recessive myotonia congenita (Becker) by detection of a 4 base pair deletion. Human Molecular Genetics, 1994, 3, 1123-1128.	1.4	69
98	Protein Kinase A Phosphorylation Alters Kvβ1.3 Subunit-mediated Inactivation of the Kv1.5 Potassium Channel. Journal of Biological Chemistry, 1999, 274, 13928-13932.	1.6	69
99	Inherited Channelopathies Associated with Epilepsy. Epilepsy Currents, 2004, 4, 65-70.	0.4	69
100	Identification of a <i>KCNQ1</i> Polymorphism Acting as a Protective Modifier Against Arrhythmic Risk in Long-QT Syndrome. Circulation: Cardiovascular Genetics, 2013, 6, 354-361.	5.1	69
101	Role of Domain 4 in Sodium Channel Slow Inactivation. Journal of General Physiology, 2000, 115, 707-718.	0.9	68
102	Location and Orientation of minK within the IKsPotassium Channel Complex. Journal of Biological Chemistry, 2001, 276, 38249-38254.	1.6	68
103	Molecular and genetic basis of sudden cardiac death. Journal of Clinical Investigation, 2013, 123, 75-83.	3.9	68
104	A missense mutation in canine ClC-1 causes recessive myotonia congenita in the dog1. FEBS Letters, 1999, 456, 54-58.	1.3	67
105	CLH-3, a ClC-2 anion channel ortholog activated during meiotic maturation in C. elegans oocytes. Current Biology, 2001, 11, 161-170.	1.8	67
106	Manipulating piggyBac Transposon Chromosomal Integration Site Selection in Human Cells. Molecular Therapy, 2011, 19, 1636-1644.	3.7	66
107	SCN10A/Nav1.8 modulation of peak and late sodium currents in patients with early onset atrial fibrillation. Cardiovascular Research, 2014, 104, 355-363.	1.8	65
108	Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability. Journal of Clinical Investigation, 2017, 127, 2805-2814.	3.9	65

Alfred L George

#	Article	IF	CITATIONS
109	Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations. Science Advances, 2018, 4, eaar2631.	4.7	64
110	Genomic Organization of the Human Skeletal Muscle Sodium Channel Gene. Genomics, 1993, 15, 598-606.	1.3	63
111	Expression of the sodium channel \hat{l}^21 subunit in rat skeletal muscle is selectively associated with the tetrodotoxin-sensitive \hat{l}_{\pm} subunit isoform. Neuron, 1993, 11, 915-922.	3.8	62
112	Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic-clonic seizures. Journal of Physiology, 2005, 569, 433-445.	1.3	62
113	Pore stoichiometry of a voltage-gated chloride channel. Nature, 1998, 394, 687-690.	13.7	61
114	Antiepileptic activity of preferential inhibitors of persistent sodium current. Epilepsia, 2014, 55, 1274-1283.	2.6	60
115	Hybrid assemblies of ATP-sensitive K+ channels determine their muscle-type-dependent biophysical and pharmacological properties. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1118-1123.	3.3	59
116	<i>AKAP9</i> Is a Genetic Modifier of Congenital Long-QT Syndrome Type 1. Circulation: Cardiovascular Genetics, 2014, 7, 599-606.	5.1	59
117	Novel SCN5A mutation in amiodarone-responsive multifocal ventricular ectopy-associated cardiomyopathy. Heart Rhythm, 2014, 11, 1446-1453.	0.3	59
118	Coxsackie and Adenovirus Receptor Is a Modifier of Cardiac Conduction and Arrhythmia Vulnerability in the Setting of Myocardial Ischemia. Journal of the American College of Cardiology, 2014, 63, 549-559.	1.2	58
119	Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm, 2016, 13, 2012-2019.	0.3	58
120	Genomic Organization and Chromosomal Assignment of the Human Voltage-Gated Na+ Channel β1 Subunit Gene (SCN1B). Genomics, 1994, 23, 628-634.	1.3	57
121	Mechanism of Ion Permeation in Skeletal Muscle Chloride Channels. Journal of General Physiology, 1997, 110, 551-564.	0.9	57
122	Functional characterization of recombinant human ClCâ€4 chloride channels in cultured mammalian cells. Journal of Physiology, 2002, 539, 373-383.	1.3	57
123	Genome Wide Analysis of Drug-Induced Torsades de Pointes: Lack of Common Variants with Large Effect Sizes. PLoS ONE, 2013, 8, e78511.	1.1	57
124	Ranolazine selectively blocks persistent current evoked by epilepsyâ€associated Na _V 1.1 mutations. British Journal of Pharmacology, 2010, 161, 1414-1426.	2.7	56
125	Nav1.1 dysfunction in genetic epilepsy with febrile seizures-plus or Dravet syndrome. European Journal of Neuroscience, 2011, 34, 1268-1275.	1.2	56
126	Unexpected Efficacy of a Novel Sodium Channel Modulator in Dravet Syndrome. Scientific Reports, 2017, 7, 1682.	1.6	56

#	Article	IF	CITATIONS
127	Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. Journal of Clinical Investigation, 2018, 128, 1043-1056.	3.9	56
128	Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling. Journal of General Physiology, 2013, 141, 193-202.	0.9	55
129	Early life establishment of site-specific microbial communities in the gut. Gut Microbes, 2014, 5, 192-201.	4.3	55
130	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	9.4	55
131	The novel sodium channel modulator <scp>GS</scp> â€458967 (<scp>GS</scp> 967) is an effective treatment in a mouse model of <i><scp>SCN</scp>8A</i> encephalopathy. Epilepsia, 2018, 59, 1166-1176.	2.6	53
132	Developmentally regulated SCN5A splice variant potentiates dysfunction of a novel mutation associated with severe fetal arrhythmia. Heart Rhythm, 2012, 9, 590-597.	0.3	52
133	Research conference summary from the 2014 International Task Force on <i>ATP1A3</i> -Related Disorders. Neurology: Genetics, 2017, 3, e139.	0.9	52
134	Modifier genes for sudden cardiac death. European Heart Journal, 2018, 39, 3925-3931.	1.0	52
135	Spectrum of K _V 2.1 Dysfunction in <i>KCNB1</i> â€Associated Neurodevelopmental Disorders. Annals of Neurology, 2019, 86, 899-912.	2.8	52
136	Vagal Reflexes Following an Exercise Stress Test. Journal of the American College of Cardiology, 2012, 60, 2515-2524.	1.2	51
137	Human sodium channel gating defects caused by missense mutations in S6 segments associated with myotonia: S804F and V1293I. Journal of Physiology, 1998, 510, 685-694.	1.3	50
138	Polymorphic ventricular tachycardia and KCNJ2 mutations. Heart Rhythm, 2004, 1, 235-241.	0.3	50
139	Precision medicine for genetic epilepsy on the horizon: Recent advances, present challenges, and suggestions for continued progress. Epilepsia, 2022, 63, 2461-2475.	2.6	50
140	I Kr drug response is modulated by KCR1 in transfected cardiac and noncardiac cell lines. FASEB Journal, 2003, 17, 2263-2265.	0.2	49
141	Functional zinc finger/sleeping beautytransposase chimeras exhibit attenuated overproduction inhibition. FEBS Letters, 2005, 579, 6205-6209.	1.3	49
142	Single-channel Properties of Human NaV1.1 and Mechanism of Channel Dysfunction in SCN1A-associated Epilepsy. Journal of General Physiology, 2006, 127, 1-14.	0.9	49
143	In vivo identification of genes that modify ether-a-go-go-related gene activity in Caenorhabditis elegans may also affect human cardiac arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11773-11778.	3.3	48
144	Malignant Perinatal Variant of Long-QT Syndrome Caused by a Profoundly Dysfunctional Cardiac Sodium Channel. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 370-378.	2.1	48

#	Article	IF	CITATIONS
145	THE CARDIAC ION CHANNELS: Relevance to Management of Arrhythmias. Annual Review of Medicine, 1996, 47, 135-148.	5.0	47
146	Coupled analysis of gene expression and chromosomal location. Genomics, 2005, 85, 401-412.	1.3	47
147	Mutant prenyltransferase-like mitochondrial protein (PLMP) and mitochondrial abnormalities in kd/kd mice. Kidney International, 2004, 66, 20-28.	2.6	46
148	Transcriptional Networks in Epithelial-Mesenchymal Transition. PLoS ONE, 2011, 6, e25354.	1.1	46
149	Independent Versus Coupled Inactivation in Sodium Channels. Journal of General Physiology, 1998, 111, 451-462.	0.9	45
150	Structural basis for KCNE3 modulation of potassium recycling in epithelia. Science Advances, 2016, 2, e1501228.	4.7	45
151	The K _{ATP} channel is a molecular sensor of atrophy in skeletal muscle. Journal of Physiology, 2010, 588, 773-784.	1.3	44
152	Genome-Wide Identification of Expression Quantitative Trait Loci (eQTLs) in Human Heart. PLoS ONE, 2014, 9, e97380.	1.1	44
153	KCNE4 can coâ€associate with the I _{Ks} (KCNQ1–KCNE1) channel complex. FEBS Journal, 2008, 275, 1336-1349.	2.2	43
154	A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure, 2018, 26, 683-694.e3.	1.6	43
155	Recent Advances in Understanding the Molecular Mechanisms of the Long QT Syndrome. Journal of Cardiovascular Electrophysiology, 1995, 6, 1023-1031.	0.8	42
156	Different flecainide sensitivity of hNav1.4 channels and myotonic mutants explained by state-dependent block. Journal of Physiology, 2004, 554, 321-334.	1.3	42
157	Trafficking-competent and trafficking-defectiveKCNJ2 mutations in Andersen syndrome. Human Mutation, 2006, 27, 388-388.	1.1	42
158	A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome. Heart Rhythm, 2009, 6, 212-218.	0.3	41
159	Expression and transcriptional control of human KCNE genes. Genomics, 2006, 87, 119-128.	1.3	40
160	Selective Targeting of Gain-of-Function KCNQ1 Mutations Predisposing to Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 960-966.	2.1	40
161	Predicting the Functional Impact of KCNQ1 Variants of Unknown Significance. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	40
162	Nontruncating SCN1A Mutations Associated with Severe Myoclonic Epilepsy of Infancy Impair Cell Surface Expression. Journal of Biological Chemistry, 2012, 287, 42001-42008.	1.6	39

#	Article	IF	CITATIONS
163	Paramyotonia congenita without paralysis on exposure to cold. NeuroReport, 1995, 6, 2001-2004.	0.6	36
164	Aging-associated down-regulation of ClC-1 expression in skeletal muscle: phenotypic-independent relation to the decrease of chloride conductance. FEBS Letters, 1999, 449, 12-16.	1.3	36
165	Polymorphisms in Beta-Adrenergic Receptor Genes in the Acquired Long QT Syndrome. Journal of Cardiovascular Electrophysiology, 2002, 13, 252-256.	0.8	36
166	Impaired Inactivation Gate Stabilization Predicts Increased Persistent Current for an Epilepsy-Associated SCN1A Mutation. Journal of Neuroscience, 2006, 26, 10958-10966.	1.7	36
167	Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state. ELife, 2020, 9, .	2.8	36
168	Functional expression of the Ile693Thr Na+channel mutation associated with paramyotonia congenita in a human cell line. Journal of Physiology, 1998, 507, 721-727.	1.3	35
169	Multiscale Complexity Analysis of the Cardiac Control Identifies Asymptomatic and Symptomatic Patients in Long QT Syndrome Type 1. PLoS ONE, 2014, 9, e93808.	1.1	35
170	Multiple Domains Contribute to the Distinct Inactivation Properties of Human Heart and Skeletal Muscle Na ⁺ Channels. Circulation Research, 1996, 78, 244-252.	2.0	35
171	Residues Lining the Inner Pore Vestibule of Human Muscle Chloride Channels. Journal of Biological Chemistry, 2001, 276, 1759-1765.	1.6	34
172	The CaMKII inhibitor KN93-calmodulin interaction and implications for calmodulin tuning of NaV1.5 and RyR2 function. Cell Calcium, 2019, 82, 102063.	1.1	34
173	Differential effects of homologous S4 mutations in human skeletal muscle sodium channels on deactivation gating from open and inactivated states. Journal of Physiology, 1999, 516, 687-698.	1.3	33
174	Genetic Mosaicism in Calmodulinopathy. Circulation Genomic and Precision Medicine, 2019, 12, 375-385.	1.6	33
175	Reengineering an Antiarrhythmic Drug Using Patient hiPSC Cardiomyocytes to Improve Therapeutic Potential and Reduce Toxicity. Cell Stem Cell, 2020, 27, 813-821.e6.	5.2	33
176	SPARCL1 suppresses metastasis in prostate cancer. Molecular Oncology, 2013, 7, 1019-1030.	2.1	32
177	Homozygous might be hemizygous: CRISPR/Cas9 editing in iPSCs results in detrimental on-target defects that escape standard quality controls. Stem Cell Reports, 2022, 17, 993-1008.	2.3	32
178	Essential carboxyl residues in yeast enolase. Biochemical and Biophysical Research Communications, 1979, 87, 59-65.	1.0	31
179	Extracellular Sodium Interacts with the HERG Channel at an Outer Pore Site. Journal of General Physiology, 2002, 120, 517-537.	0.9	31
180	Personalized Biochemistry and Biophysics. Biochemistry, 2015, 54, 2551-2559.	1.2	31

#	Article	IF	CITATIONS
181	Characterization of a <i>KCNB1</i> variant associated with autism, intellectual disability, and epilepsy. Neurology: Genetics, 2017, 3, e198.	0.9	31
182	Nadolol Block of Nav1.5 Does Not Explain Its Efficacy in the Long QT Syndrome. Journal of Cardiovascular Pharmacology, 2012, 59, 249-253.	0.8	30
183	CaMKII modulates sodium current in neurons from epileptic <i>Scn2a</i> mutant mice. Proceedings of the United States of America, 2017, 114, 1696-1701.	3.3	30
184	<i>SCN1A</i> variants associated with sudden infant death syndrome. Epilepsia, 2018, 59, e56-e62.	2.6	30
185	Ranolazine block of human Na _v 1.4 sodium channels and paramyotonia congenita mutants. Channels, 2011, 5, 161-172.	1.5	29
186	Use-Dependent Block of Human Cardiac Sodium Channels by GS967. Molecular Pharmacology, 2016, 90, 52-60.	1.0	29
187	Alternative splicing potentiates dysfunction of early-onset epileptic encephalopathy <i>SCN2A</i> variants. Journal of General Physiology, 2020, 152, .	0.9	29
188	Blastomycosis presenting as monarticular arthritis. The role of synovial fluid cytology. Arthritis and Rheumatism, 1985, 28, 516-521.	6.7	28
189	Genomic organization of a human cystine transporter gene (SLC3A1) and identification of novel mutations causing cystinuria. Kidney International, 1997, 51, 1893-1899.	2.6	28
190	NovelKCNQ1 mutations associated with recessive and dominant congenital long QT Syndromes: Evidence for variable hearing phenotype associated with R518X. , 2000, 15, 387-388.		28
191	From stones to bones: The biology of CIC chloride channels. Current Biology, 2001, 11, R620-R628.	1.8	28
192	KCNE4 Juxtamembrane Region Is Required for Interaction with Calmodulin and for Functional Suppression of KCNQ1. Journal of Biological Chemistry, 2011, 286, 4141-4149.	1.6	28
193	Essential arginyl residues in yeast enolase. Biochemical and Biophysical Research Communications, 1978, 82, 901-906.	1.0	27
194	High-throughput evaluation of epilepsy-associated KCNQ2 variants reveals functional and pharmacological heterogeneity. JCI Insight, 2022, 7, .	2.3	27
195	Ranolazine Reduces Neuronal Excitability by Interacting with Inactivated States of Brain Sodium Channels. Molecular Pharmacology, 2014, 85, 162-174.	1.0	26
196	Striatal Kir2 K+ channel inhibition mediates the antidyskinetic effects of amantadine. Journal of Clinical Investigation, 2020, 130, 2593-2601.	3.9	26
197	Upgraded molecular models of the human KCNQ1 potassium channel. PLoS ONE, 2019, 14, e0220415.	1.1	26
198	Functional consequences of a <i>KCNT1</i> variant associated with status dystonicus and earlyâ€onset infantile encephalopathy. Annals of Clinical and Translational Neurology, 2019, 6, 1606-1615.	1.7	25

#	Article	IF	CITATIONS
199	Apolipoprotein L1 and the Genetic Basis for Racial Disparity in Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2011, 22, 1955-1958.	3.0	23
200	Structures Illuminate Cardiac Ion Channel Functions in Health and in Long QT Syndrome. Frontiers in Pharmacology, 2020, 11, 550.	1.6	23
201	Dyshomeostatic modulation of Ca2+-activated K+ channels in a human neuronal model of KCNQ2 encephalopathy. ELife, 2021, 10, .	2.8	23
202	Myotonic dystrophy kinase modulates skeletal muscle but not cardiac voltage-gated sodium channels. FEBS Letters, 1997, 412, 621-624.	1.3	22
203	Molecular Basis of Inherited Epilepsy. Archives of Neurology, 2004, 61, 473.	4.9	22
204	SCN5A Variation Is Associated With Electrocardiographic Traits in the Jackson Heart Study. Circulation: Cardiovascular Genetics, 2011, 4, 139-144.	5.1	22
205	Genomic Autopsy of Sudden Deaths in Young Individuals. JAMA Cardiology, 2021, 6, 1247.	3.0	22
206	Reduced expression of Kir6.2/SUR2A subunits explains KATP deficiency in K+-depleted rats. Neuromuscular Disorders, 2008, 18, 74-80.	0.3	21
207	Identification and Characterization of a Compound That Protects Cardiac Tissue from Human Ether-Ã-go-go-related Gene (hERG)-related Drug-induced Arrhythmias. Journal of Biological Chemistry, 2012, 287, 39613-39625.	1.6	21
208	Arrhythmogenic calmodulin mutations impede activation of small-conductance calcium-activated potassium current. Heart Rhythm, 2016, 13, 1716-1723.	0.3	21
209	Direct evidence of impaired neuronal Na/K-ATPase pump function in alternating hemiplegia of childhood. Neurobiology of Disease, 2018, 115, 29-38.	2.1	21
210	Distinct subdomains of the KCNQ1 S6 segment determine channel modulation by different KCNE subunits. Journal of General Physiology, 2009, 134, 207-217.	0.9	20
211	Molecular genetics of ion channel diseases. Kidney International, 1995, 48, 1180-1190.	2.6	19
212	Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1. Computational and Structural Biotechnology Journal, 2019, 17, 206-214.	1.9	19
213	Allosteric mechanism for KCNE1 modulation of KCNQ1 potassium channel activation. ELife, 2020, 9, .	2.8	19
214	Probing the major skeletal muscle chloride channel with Zn 2+ and other sulfhydryl-reactive compounds. Pflugers Archiv European Journal of Physiology, 1996, 433, 357-363.	1.3	18
215	Functional consequences of a domain 1/S6 segment sodium channel mutation associated with painful congenital myotonia. FEBS Letters, 1999, 448, 231-234.	1.3	18
216	KCNQ1/KCNE1 assembly, co-translation not required. Channels, 2010, 4, 108-114.	1.5	18

#	Article	IF	CITATIONS
217	Calmodulinopathy: A genetic trilogy. Heart Rhythm, 2015, 12, 423-424.	0.3	18
218	Cryptic prokaryotic promoters explain instability of recombinant neuronal sodium channels in bacteria. Journal of Biological Chemistry, 2021, 296, 100298.	1.6	18
219	Arrhythmia Variant Associations and Reclassifications in the eMERGE-III Sequencing Study. Circulation, 2022, 145, 877-891.	1.6	18
220	Intracellular Calcium Attenuates Late Current Conducted by Mutant Human Cardiac Sodium Channels. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 933-941.	2.1	17
221	Potentiating α ₂ subunit containing perisomatic GABA _A receptors protects against seizures in a mouse model of Dravet syndrome. Journal of Physiology, 2019, 597, 4293-4307.	1.3	17
222	GS-967 and Eleclazine Block Sodium Channels in Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Molecular Pharmacology, 2020, 98, 540-547.	1.0	17
223	Epilepsy and neurobehavioral abnormalities in mice with a dominant-negative KCNB1 pathogenic variant. Neurobiology of Disease, 2021, 147, 105141.	2.1	17
224	Molecular physiology of renal CIC chloride channels/transporters. Current Opinion in Nephrology and Hypertension, 2006, 15, 511-516.	1.0	16
225	Functional <italic>BSND</italic> Variants in Essential Hypertension <xref ref-type="author-notes" rid="fn1">[*]<subtitle></subtitle>. American Journal of Hypertension, 2007, 20, 1176-1182.</xref 	1.0	16
226	Haplotype Diversity in Four Genes <i>(CLCNKA, CLCNKB, BSND, NEDD4L) </i> Involved in Renal Salt Reabsorption. Human Heredity, 2008, 65, 33-46.	0.4	16
227	KCNE4 domains required for inhibition of KCNQ1. Journal of Physiology, 2009, 587, 303-314.	1.3	16
228	Common genetic variants in sudden cardiac death. Heart Rhythm, 2009, 6, S3-S9.	0.3	16
229	A proposed mutation, Val781Ile, associated with hyperkalemic periodic paralysis and cardiac dysrhythmia is a benign polymorphism. Annals of Neurology, 1997, 42, 253-256.	2.8	15
230	Cellular and behavioral effects of altered NaV1.2 sodium channel ion permeability in <i>Scn2aK1422E</i> mice. Human Molecular Genetics, 2022, 31, 2964-2988.	1.4	15
231	High-resolution mapping of the sodium channel modifier Scnm1 on mouse chromosome 3 and identification of a 1.3-kb recombination hot spot. Genomics, 2003, 82, 452-459.	1.3	14
232	Assignment of a Human Voltage-Dependent Sodium Channel α-Subunit Gene (SCN6A) to 2q21-q23. Genomics, 1994, 19, 395-397.	1.3	13
233	Measuring Drug Metabolism Kinetics and Drug–Drug Interactions Using Self-Assembled Monolayers for Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry. Analytical Chemistry, 2016, 88, 8604-8609.	3.2	13
234	Functional and pharmacological evaluation of a novel <i>SCN2A</i> variant linked to earlyâ€onset epilepsy. Annals of Clinical and Translational Neurology, 2020, 7, 1488-1501.	1.7	13

#	Article	IF	CITATIONS
235	Impact of CYP2C9â€Interacting Drugs on Warfarin Pharmacogenomics. Clinical and Translational Science, 2020, 13, 941-949.	1.5	13
236	Expression of a ClC chloride channel in Caenorhabditis elegans gamma-aminobutyric acid-ergic neurons. Neuroscience Letters, 2001, 299, 177-180.	1.0	12
237	Exaggerated Mg2+Inhibition of KCNJ2 as a Consequence of Reduced PIP2Sensitivity in Andersen Syndrome. Channels, 2007, 1, 209-217.	1.5	12
238	Low-Pass Filtering Approach via Empirical Mode Decomposition Improves Short-Scale Entropy-Based Complexity Estimation of QT Interval Variability in Long QT Syndrome Type 1 Patients. Entropy, 2014, 16, 4839-4854.	1.1	12
239	Pharmacogenomics in pregnancy. Seminars in Perinatology, 2020, 44, 151222.	1.1	12
240	KNa1.1 gain-of-function preferentially dampens excitability of murine parvalbumin-positive interneurons. Neurobiology of Disease, 2022, 168, 105713.	2.1	12
241	Recent genetic discoveries implicating ion channels in human cardiovascular diseases. Current Opinion in Pharmacology, 2014, 15, 47-52.	1.7	11
242	New approaches to establish genetic causality. Trends in Cardiovascular Medicine, 2015, 25, 646-652.	2.3	11
243	Novel <i>CALM3</i> Variant Causing Calmodulinopathy With Variable Expressivity in a 4-Generation Family. Circulation: Arrhythmia and Electrophysiology, 2022, 15, CIRCEP121010572.	2.1	11
244	Cardiac Evaluation of Children With a Family History of Sudden Death. Journal of the American College of Cardiology, 2019, 74, 759-770.	1.2	10
245	â€ [~] Channeling' therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends in Pharmacological Sciences, 2022, 43, 392-405.	4.0	10
246	Genetic variation in the rhythmonome: ethnic variation and haplotype structure in candidate genes for arrhythmias. Pharmacogenomics, 2009, 10, 1043-1053.	0.6	9
247	Novel deletion mutation in the cardiac sodium channel inactivation gate causes long QT syndrome. International Journal of Cardiology, 2013, 165, 362-365.	0.8	9
248	Functional evaluation of human ion channel variants using automated electrophysiology. Methods in Enzymology, 2021, 654, 383-405.	0.4	9
249	Enhanced slow inactivation contributes to dysfunction of a recurrent <i>SCN2A</i> mutation associated with developmental and epileptic encephalopathy. Journal of Physiology, 2021, 599, 4375-4388.	1.3	9
250	Novel <i>SCN1A</i> frameshift mutation with absence of truncated Na _V 1.1 protein in severe myoclonic epilepsy of infancy. American Journal of Medical Genetics, Part A, 2008, 146A, 2421-2423.	0.7	8
251	Treatment of calmodulinopathy with verapamil. BMJ Case Reports, 2017, 2017, bcr-2017-220568.	0.2	8
252	Understanding Circadian Mechanisms of Sudden Cardiac Death: A Report From the National Heart, Lung, and Blood Institute Workshop, Part 1: Basic and Translational Aspects. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e010181.	2.1	8

#	Article	IF	CITATIONS
253	Use of Contemporary Genetics in Cardiovascular Diagnosis. Circulation, 2014, 130, 1971-1980.	1.6	7
254	Neuronal modeling of alternating hemiplegia of childhood reveals transcriptional compensation and replicates a trigger-induced phenotype. Neurobiology of Disease, 2020, 141, 104881.	2.1	7
255	Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. Journal of General Physiology, 2020, 152, .	0.9	7
256	Functional interaction between extracellular sodium, potassium and inactivation gating in HERG channels. Journal of Physiology, 2004, 558, 729-744.	1.3	6
257	Leaky channels make weak muscles. Journal of Clinical Investigation, 2012, 122, 4333-4336.	3.9	6
258	Pathophysiology of myotonia and periodic paralysis. , 2002, , 1183-1206.		5
259	Decoding KCNH2 variants of unknown significance. Heart Rhythm, 2020, 17, 501-502.	0.3	5
260	Predicting the functional impact of KCNQ1 variants with artificial neural networks. PLoS Computational Biology, 2022, 18, e1010038.	1.5	5
261	A Data Similarity-Based Strategy for Meta-analysis of Transcriptional Profiles in Cancer. PLoS ONE, 2013, 8, e54979.	1.1	4
262	Lessons learned from genetic testing for channelopathies. Lancet Neurology, The, 2014, 13, 1068-1070.	4.9	4
263	Long QT syndrome KCNH2 mutation with sequential fetal and maternal sudden death. Forensic Science, Medicine, and Pathology, 2018, 14, 367-371.	0.6	4
264	Trajectories of Depressive and Anxiety Symptoms Across Pregnancy and Postpartum in Selective Serotonin Reuptake Inhibitorâ€Treated Women. Psychiatric Research and Clinical Practice, 2022, 4, 32-41.	1.3	4
265	Hypercalcemia in Carcinoma of the Prostate: Case Report and Review of the Literature. Journal of Urology, 1987, 137, 309-311.	0.2	3
266	AB1-5. Heart Rhythm, 2006, 3, S2.	0.3	3
267	Misplaced Brain Sodium Channels in Heart Kindle Sudden Death in Epilepsy. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 769-771.	2.1	3
268	Allelic Complexity in Long QT Syndrome: A Family-Case Study. International Journal of Molecular Sciences, 2017, 18, 1633.	1.8	3
269	The sodium channel Na X : Possible player in excitation–contraction coupling. IUBMB Life, 2020, 72, 601-606.	1.5	3
270	Disease-linked supertrafficking of a potassium channel. Journal of Biological Chemistry, 2021, 296, 100423.	1.6	3

#	Article	IF	CITATIONS
271	Mitochondrial cardiomyopathy and ventricular arrhythmias associated with biallelic variants in C1QBP. American Journal of Medical Genetics, Part A, 2021, 185, 2496-2501.	0.7	3
272	Understanding Circadian Mechanisms of Sudden Cardiac Death: A Report From the National Heart, Lung, and Blood Institute Workshop, Part 2: Population and Clinical Considerations. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e010190.	2.1	3
273	The importance of being selective. Heart Rhythm, 2019, 16, 279-280.	0.3	2
274	Discordance Between Germline and Blood Mosaicism in Calmodulinopathy. Circulation Genomic and Precision Medicine, 2022, 15, 101161CIRCGEN121003695.	1.6	1
275	Response to Letter Regarding Articles, "Prevalence of Long QT Syndrome Gene Variants in Sudden Infant Death Syndrome,â€â€œCardiac Sodium Channel Dysfunction in Sudden Infant Death Syndrome,― and "Contribution of Long-QT Syndrome Genes to Sudden Infant Death Syndrome: Is It Time to Consider Newborn Electrocardiographic Screening?― Circulation. 2007. 116.	1.6	0
276	Response to Letter Regarding Article, "Cardiac Sodium Channel (SCN5A) Variants Associated with Atrial Fibrillation― Circulation, 2008, 118, .	1.6	0
277	Mechanisms in Heritable Sodium Channel Diseases. , 2018, , 473-482.		Ο
278	Long QT Syndrome Type 1 in an Australian Indigenous Patient. Circulation Genomic and Precision Medicine, 2020, 13, e002813.	1.6	0
279	Oita International Electrocardiology Symposium 2000 "Electrophysiology and Management of Lethal Arrhythmias in the New Millennium: From Genes to Bedside― Japanese Journal of Electrocardiology, 2000, 20, 71-72.	0.0	0
280	Factors Affecting Yield of Genetic Testing of Sudden Deaths in Young Individuals—Reply. JAMA Cardiology, 2022, , .	3.0	0