Dace Pjanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4307899/publications.pdf Version: 2024-02-01

DACE PIANOVA

#	Article	IF	CITATIONS
1	Melanoma prone families with <i>CDK4</i> germline mutation: phenotypic profile and associations with <i>MC1R</i> variants. Journal of Medical Genetics, 2013, 50, 264-270.	3.2	112
2	Predictors of Sun Protection Behaviors and Severe Sunburn in an International Online Study. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2199-2210.	2.5	106
3	Toluidine blue test for sperm DNA integrity and elaboration of image cytometry algorithm. Cytometry, 2003, 52A, 19-27.	1.8	74
4	Inherited variants in the <i>MC1R</i> gene and survival from cutaneous melanoma: a BioGenoMEL study. Pigment Cell and Melanoma Research, 2012, 25, 384-394.	3.3	61
5	Melanoma risk factors, perceived threat and intentional tanning: an international online survey. European Journal of Cancer Prevention, 2010, 19, 216-226.	1.3	47
6	The Cancer Aneuploidy Paradox: In the Light of Evolution. Genes, 2019, 10, 83.	2.4	41
7	Skin Examination Behavior. Archives of Dermatology, 2012, 148, 1142.	1.4	36
8	"Mitotic Slippage―and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres. International Journal of Molecular Sciences, 2020, 21, 2779.	4.1	36
9	CDKN2A and CDK4 variants in Latvian melanoma patients: analysis of a clinic-based population. Melanoma Research, 2007, 17, 185-191.	1.2	34
10	An inherited variant in the gene coding for vitamin <scp>D</scp> â€binding protein and survival from cutaneous melanoma: a <scp>B</scp> io <scp>G</scp> eno <scp>MEL</scp> study. Pigment Cell and Melanoma Research, 2014, 27, 234-243.	3.3	25
11	Inherited variation in the PARP1 gene and survival from melanoma. International Journal of Cancer, 2014, 135, 1625-1633.	5.1	24
12	Oncolytic viruses sensitize human tumor cells for NY-ESO-1 tumor antigen recognition by CD4+ effector T cells Oncolmmunology, 2018, 7, e1407897.	4.6	22
13	Somatic BRAF and NRAS Mutations in Familial Melanomas with Known Germline CDKN2A Status: A GenoMEL Study. Journal of Investigative Dermatology, 2014, 134, 287-290.	0.7	18
14	Germline Variation at CDKN2A and Associations with Nevus Phenotypes amongÂMembers of Melanoma Families. Journal of Investigative Dermatology, 2017, 137, 2606-2612.	0.7	18
15	Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT. Journal of the American Academy of Dermatology, 2019, 81, 386-394.	1.2	17
16	Identification of a CDK4 R24H mutation-positive melanoma family by analysis of early-onset melanoma patients in Latvia. Melanoma Research, 2009, 19, 119-122.	1.2	16
17	Melanoma epidemiology, prognosis and trends in Latvia. Journal of the European Academy of Dermatology and Venereology, 2013, 27, 1352-1359.	2.4	14
18	Analysis of Latvian familial melanoma patients shows novel variants in the noncoding regions of CDKN2A and that the CDK4 mutation R24H is a founder mutation. Melanoma Research, 2013, 23, 221-226.	1.2	13

Dace Pjanova

#	Article	IF	CITATIONS
19	Phenotypic and Histopathological Tumor Characteristics According to CDKN2A Mutation Status among Affected Members ofAMelanoma Families. Journal of Investigative Dermatology, 2016, 136, 1066-1069.	0.7	13
20	Association of HERV-K and LINE-1 hypomethylation with reduced disease-free survival in melanoma patients. Epigenomics, 2020, 12, 1689-1706.	2.1	11
21	Replacement of short segments within transmembrane domains of MC2R disrupts retention signal. Journal of Molecular Endocrinology, 2014, 53, 201-215.	2.5	10
22	<i>Ex vivo</i> cytokine production in peripheral blood mononuclear cells after their stimulation with ds <scp>RNA</scp> of natural origin. Biotechnology and Applied Biochemistry, 2014, 61, 65-73.	3.1	9
23	Comparison of the effects of bacteriophage-derived dsRNA and poly(I:C) on ex vivo cultivated peripheral blood mononuclear cells. Immunology Letters, 2019, 212, 114-119.	2.5	8
24	Role of the Circadian Clock "Death-Loop―in the DNA Damage Response Underpinning Cancer Treatment Resistance. Cells, 2022, 11, 880.	4.1	8
25	Melanoma risk associated with MC1R gene variants in Latvia and the functional analysis of rare variants. Cancer Genetics, 2013, 206, 81-91.	0.4	7
26	Prognostic factors and epidemiological characteristics of cutaneous and mucosal head and neck melanoma. Stomatologija, 2011, 13, 49-54.	0.3	4
27	The Role of the Meiotic Component in Reproduction of B-RAF-Mutated Melanoma: A Review and "Brainstorming―Session. , 0, , .		2
28	The effect of intranasally administered TLR3 agonist larifan on metabolic profile of microglial cells in rat with C6 glioma. Ukrainian Biochemical Journal, 2018, 90, 110-119.	0.5	2
29	The complementary effect of rs1042522 in TP53 and rs1805007 in MC1R is associated with an elevated risk of cutaneous melanoma in Latvian population. Oncology Letters, 2019, 18, 5225-5234.	1.8	2
30	Effect of Bacteriophage-Derived Double Stranded RNA on Rat Peritoneal Macrophages and Microglia in Normoxia and Hypoxia. Proceedings of the Latvian Academy of Sciences, 2021, 75, 343-349.	0.1	2
31	The lack of E318K MITF germline mutation in Latvian melanoma patients. Cancer Genetics, 2015, 208, 355-356.	0.4	1
32	Association of the 16q24.3 region gene variants rs1805007 and rs4785763 with heightened risk of melanoma in Latvian population. Meta Gene, 2018, 18, 87-92.	0.6	1
33	Genetic alteration in melanoma development. Proceedings of the Latvian Academy of Sciences, 2009, 63, 73-80.	0.1	0
34	Abstract 867: Somatic BRAF and NRAS mutations in familial melanoma: a GenoMEL study. , 2011, , .		0
35	Abstract 869: Characterization of malignant melanoma families withCDK4germ-line mutation. , 2011, , .		0
36	Features associated with melanoma metastasis in Latvia. Oncology Letters, 2020, 20, 1-1.	1.8	0