## Justin C St John

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4307565/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Low guanine content and biased nucleotide distribution in vertebrate mtDNA can cause overestimation of non-CpG methylation. NAR Genomics and Bioinformatics, 2022, 4, lqab119.                                              | 1.5 | 0         |
| 2  | Mitochondrial supplementation of Sus scrofa metaphase II oocytes alters DNA methylation and gene expression profiles of blastocysts. Epigenetics and Chromatin, 2022, 15, 12.                                               | 1.8 | 6         |
| 3  | Ancestral dietary change alters the development of <i>Drosophila</i> larvae through MAPK signalling. Fly, 2022, 16, 298-310.                                                                                                | 0.9 | 2         |
| 4  | Epigenetic Regulation of the Nuclear and Mitochondrial Genomes: Involvement in Metabolism,<br>Development, and Disease. Annual Review of Animal Biosciences, 2021, 9, 203-224.                                              | 3.6 | 1         |
| 5  | Analysis of Upstream Regulators, Networks, and Pathways Associated With the Expression Patterns of<br>Polycystic Ovary Syndrome Candidate Genes During Fetal Ovary Development. Frontiers in Genetics,<br>2021, 12, 762177. | 1.1 | 5         |
| 6  | Lipopolysaccharide promotes Drp1â€dependent mitochondrial fission and associated inflammatory responses in macrophages. Immunology and Cell Biology, 2020, 98, 528-539.                                                     | 1.0 | 47        |
| 7  | Mitochondria and Female Germline Stem Cells—A Mitochondrial DNA Perspective. Cells, 2019, 8, 852.                                                                                                                           | 1.8 | 13        |
| 8  | Genomic Balance: Two Genomes Establishing Synchrony to Modulate Cellular Fate and Function.<br>Cells, 2019, 8, 1306.                                                                                                        | 1.8 | 12        |
| 9  | The transgenerational effects of oocyte mitochondrial supplementation. Scientific Reports, 2019, 9, 6694.                                                                                                                   | 1.6 | 11        |
| 10 | Transmission of Dysfunctional Mitochondrial DNA and Its Implications for Mammalian Reproduction.<br>Advances in Anatomy, Embryology and Cell Biology, 2019, 231, 75-103.                                                    | 1.0 | 11        |
| 11 | The effects of mitochondrial DNA supplementation at the time of fertilization on the gene expression profiles of porcine preimplantation embryos. Molecular Reproduction and Development, 2018, 85, 490-504.                | 1.0 | 23        |
| 12 | The molecular characterisation of mitochondrial DNA deficient oocytes using a pig model. Human<br>Reproduction, 2018, 33, 942-953.                                                                                          | 0.4 | 19        |
| 13 | Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells. Nucleic Acids Research, 2018, 46, 5977-5995.                                                                  | 6.5 | 40        |
| 14 | The degree of mitochondrial DNA methylation in tumor models of glioblastoma and osteosarcoma.<br>Clinical Epigenetics, 2018, 10, 157.                                                                                       | 1.8 | 32        |
| 15 | Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA<br>methylation and gene expression of the nuclear genome in tumours. Epigenetics and Chromatin, 2018,<br>11, 53.              | 1.8 | 30        |
| 16 | The association of mitochondrial DNA haplotypes and phenotypic traits in pigs. BMC Genetics, 2018, 19, 41.                                                                                                                  | 2.7 | 20        |
| 17 | Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer. Scientific Reports, 2018, 8, 7246.                                     | 1.6 | 20        |
| 18 | The mitochondrial genome: how it drives fertility. Reproduction, Fertility and Development, 2018, 30, 118.                                                                                                                  | 0.1 | 8         |

JUSTIN C ST JOHN

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Manipulating the Mitochondrial Genome To Enhance Cattle Embryo Development. G3: Genes, Genomes,<br>Genetics, 2017, 7, 2065-2080.                                                                       | 0.8 | 19        |
| 20 | Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns. Cell Death Discovery, 2017, 3, 17062.                   | 2.0 | 33        |
| 21 | Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human<br>Amniotic Epithelial Cells. Stem Cells and Development, 2017, 26, 1505-1519.                              | 1.1 | 4         |
| 22 | Cattle phenotypes can disguise their maternal ancestry. BMC Genetics, 2017, 18, 59.                                                                                                                    | 2.7 | 15        |
| 23 | The molecular characterization of porcine egg precursor cells. Oncotarget, 2017, 8, 63484-63505.                                                                                                       | 0.8 | 10        |
| 24 | Mitochondrial DNA supplementation as an enhancer of female reproductive capacity. Current Opinion in Obstetrics and Gynecology, 2016, 28, 211-216.                                                     | 0.9 | 4         |
| 25 | The role of mitochondrial DNA copy number, variants, and haplotypes in farm animal developmental outcome. Domestic Animal Endocrinology, 2016, 56, S133-S146.                                          | 0.8 | 12        |
| 26 | The relationship between mitochondrial DNA haplotype and the reproductive capacity of domestic pigs<br>(Sus scrofa domesticus). BMC Genetics, 2016, 17, 67.                                            | 2.7 | 42        |
| 27 | The role of the mtDNA set point in differentiation, development and tumorigenesis. Biochemical<br>Journal, 2016, 473, 2955-2971.                                                                       | 1.7 | 40        |
| 28 | Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Scientific Reports, 2016, 6, 23229.                                       | 1.6 | 65        |
| 29 | Segregation of Naturally Occurring Mitochondrial DNA Variants in a Mini-Pig Model. Genetics, 2016, 202, 931-944.                                                                                       | 1.2 | 20        |
| 30 | Mitochondrial DNA copy number and replication in reprogramming and differentiation. Seminars in<br>Cell and Developmental Biology, 2016, 52, 93-101.                                                   | 2.3 | 46        |
| 31 | Deletion of the Complex I Subunit NDUFS4 Adversely Modulates Cellular Differentiation. Stem Cells and Development, 2016, 25, 239-250.                                                                  | 1.1 | 8         |
| 32 | Analysis of Mitochondrial DNA Copy Number and Its Regulation Through DNA Methylation of POLGA.<br>Methods in Molecular Biology, 2016, 1351, 131-141.                                                   | 0.4 | 5         |
| 33 | Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development (Cambridge), 2015, 142, 681-691. | 1.2 | 223       |
| 34 | The mitochondrion, its genome and their contribution to well-being and disease. Molecular Human Reproduction, 2015, 21, 1-2.                                                                           | 1.3 | 7         |
| 35 | Analysis of Mitochondrial DNA in Induced Pluripotent and Embryonic Stem Cells. Methods in Molecular Biology, 2015, 1330, 219-252.                                                                      | 0.4 | 3         |
| 36 | Analysis of the Mitochondrial DNA and Its Replicative Capacity in Induced Pluripotent Stem Cells.<br>Methods in Molecular Biology, 2014, 1357, 231-267.                                                | 0.4 | 3         |

JUSTIN C ST JOHN

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The identification of mitochondrial DNA variants in glioblastoma multiforme. Acta Neuropathologica<br>Communications, 2014, 2, 1.                                                                    | 2.4 | 143       |
| 38 | The Effects of Nuclear Reprogramming on Mitochondrial DNA Replication. Stem Cell Reviews and Reports, 2013, 9, 1-15.                                                                                 | 5.6 | 48        |
| 39 | Mitochondrial DNA Haplotypes Define Gene Expression Patterns in Pluripotent and Differentiating<br>Embryonic Stem Cells. Stem Cells, 2013, 31, 703-716.                                              | 1.4 | 65        |
| 40 | Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Research, 2012, 40, 10124-10138.              | 6.5 | 154       |
| 41 | Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. Cell and Tissue Research, 2012, 349, 795-808.                    | 1.5 | 27        |
| 42 | The Control of Mitochondrial DNA Replication in Gametes, Embryos, and Early Development Biology of Reproduction, 2012, 87, 109-109.                                                                  | 1.2 | 2         |
| 43 | Interspecies Somatic Cell Nuclear Transfer Is Dependent on Compatible Mitochondrial DNA and Reprogramming Factors. PLoS ONE, 2011, 6, e14805.                                                        | 1.1 | 40        |
| 44 | Generation of mtDNA Homoplasmic Cloned Lambs. Cellular Reprogramming, 2010, 12, 347-355.                                                                                                             | 0.5 | 31        |
| 45 | Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Human Reproduction Update, 2010, 16, 488-509. | 5.2 | 234       |
| 46 | Mitochondrial DNA replication during differentiation of murine embryonic stem cells. Journal of Cell<br>Science, 2007, 120, 4025-4034.                                                               | 1.2 | 261       |
| 47 | Regulated Mitochondrial DNA Replication During Oocyte Maturation Is Essential for Successful Porcine Embryonic Development. Biology of Reproduction, 2007, 76, 327-335.                              | 1.2 | 224       |
| 48 | The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Human Reproduction, 2007, 22, 1585-1596.          | 0.4 | 116       |
| 49 | Contrasting Effects of in Vitro Fertilization and Nuclear Transfer on the Expression of mtDNA<br>Replication Factors. Genetics, 2007, 176, 1511-1526.                                                | 1.2 | 55        |
| 50 | Sperm mitochondria and fertilisation. Society of Reproduction and Fertility Supplement, 2007, 65, 399-416.                                                                                           | 0.2 | 5         |
| 51 | Mitochondria directly influence fertilisation outcome in the pig. Reproduction, 2006, 131, 233-245.                                                                                                  | 1.1 | 289       |
| 52 | Mitochondrial content reflects oocyte variability and fertilization outcome. Fertility and Sterility, 2006, 85, 584-591.                                                                             | 0.5 | 344       |
| 53 | Aberrant Nucleo-cytoplasmic Cross-Talk Results in Donor Cell mtDNA Persistence in Cloned Embryos.<br>Genetics, 2006, 172, 2515-2527.                                                                 | 1.2 | 61        |
| 54 | The Analysis of Mitochondria and Mitochondrial DNA in Human Embryonic Stem Cells. , 2006, 331, 347-374.                                                                                              |     | 49        |

JUSTIN C ST JOHN

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Aberrant heteroplasmic transmission of mtDNA in cloned pigs arising from double nuclear transfer.<br>Molecular Reproduction and Development, 2005, 72, 450-460.                          | 1.0 | 38        |
| 56 | The impact of mitochondrial genetics on male infertility. Journal of Developmental and Physical Disabilities, 2005, 28, 65-73.                                                           | 3.6 | 111       |
| 57 | Stem-cell banking: the size of the task. Lancet, The, 2005, 366, 1991-1992.                                                                                                              | 6.3 | 4         |
| 58 | The Expression of Mitochondrial DNA Transcription Factors during Early Cardiomyocyte In Vitro Differentiation from Human Embryonic Stem Cells. Cloning and Stem Cells, 2005, 7, 141-153. | 2.6 | 216       |
| 59 | The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction, 2004, 127, 631-641.                         | 1.1 | 81        |
| 60 | Paternal Mitochondrial DNA Transmission During Nonhuman Primate Nuclear Transfer. Genetics, 2004, 167, 897-905.                                                                          | 1.2 | 71        |
| 61 | The potential risks of abnormal transmission of mtDNA through assisted reproductive technologies.<br>Reproductive BioMedicine Online, 2004, 8, 34-44.                                    | 1.1 | 28        |
| 62 | Ooplasm donation in humans: The need to investigate the transmission of mitochondrial DNA following cytoplasmic transfer. Human Reproduction, 2002, 17, 1954-1958.                       | 0.4 | 46        |