
Hong Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/430756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osteoblastic glucocorticoid signaling exacerbates high-fat-diet- induced bone loss and obesity. Bone Research, 2021, 9, 40.	5.4	16
2	Bone Metabolism. , 2021, , 336-345.		1
3	Basic and clinical aspects of glucocorticoid action in bone. , 2020, , 915-940.		0
4	Skeletal glucocorticoid signalling determines leptin resistance and obesity in aging mice. Molecular Metabolism, 2020, 42, 101098.	3.0	8
5	Arthritis and the role of endogenous glucocorticoids. Bone Research, 2020, 8, 33.	5.4	32
6	The P ₅₀ value detected by the oxygenation-dissociation analyser and blood gas analyser. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 867-874.	1.9	10
7	Hypomethylation-Linked Activation of PLCE1 Impedes Autophagy and Promotes Tumorigenesis through MDM2-Mediated Ubiquitination and Destabilization of p53. Cancer Research, 2020, 80, 2175-2189.	0.4	21
8	Bone Metabolism. , 2020, , 1-11.		0
9	Androgens sensitise mice to glucocorticoid-induced insulin resistance and fat accumulation. Diabetologia, 2019, 62, 1463-1477.	2.9	32
10	Metabolic and skeletal homeostasis are maintained in full locus GPRC6A knockout mice. Scientific Reports, 2019, 9, 5995.	1.6	17
11	Loss of the Vitamin D Receptor in Human Breast Cancer Cells Promotes Epithelial to Mesenchymal Cell Transition and Skeletal Colonization. Journal of Bone and Mineral Research, 2019, 34, 1721-1732.	3.1	26
12	Label-free dynamic mass redistribution analysis of endogenous adrenergic receptor signaling in primary preadipocytes and differentiated adipocytes. Journal of Pharmacological and Toxicological Methods, 2019, 97, 59-66.	0.3	2
13	Bone function, dysfunction and its role in diseases including critical illness. International Journal of Biological Sciences, 2019, 15, 776-787.	2.6	64
14	Epigenetically upregulated oncoprotein PLCE1 drives esophageal carcinoma angiogenesis and proliferation via activating the PI-PLCÎμ-NF-κB signaling pathway and VEGF-C/ Bcl-2 expression. Molecular Cancer, 2019, 18, 1.	7.9	408
15	Glucocorticoids Suppress the Browning of Adipose Tissue via miR-19b in Male Mice. Endocrinology, 2018, 159, 310-322.	1.4	25
16	MiRâ€27bâ€3p Regulation in Browning of Human Visceral Adipose Related to Central Obesity. Obesity, 2018, 26, 387-396.	1.5	20
17	Comparison of blood sampling methods for plasma corticosterone measurements in mice associated with minimal stress-related artefacts. Steroids, 2018, 135, 69-72.	0.8	35
18	Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage. FASEB Journal, 2018, 32, 478-487.	0.2	18

#	Article	IF	CITATIONS
19	Both ligand and VDR expression levels critically determine the effect of 1α,25-dihydroxyvitamin-D3 on osteoblast differentiation. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 83-90.	1.2	13
20	Glucocorticoids and Bone: Consequences of Endogenous and Exogenous Excess and Replacement Therapy. Endocrine Reviews, 2018, 39, 519-548.	8.9	162
21	Role of 11β-HSD type 1 in abnormal HPA axis activity during immune-mediated arthritis. Endocrine Connections, 2018, 7, 385-394.	0.8	5
22	Plumbagin Ameliorates Collagen-Induced Arthritis by Regulating Treg/Th17 Cell Imbalances and Suppressing Osteoclastogenesis. Frontiers in Immunology, 2018, 9, 3102.	2.2	13
23	Osteoblasts and global energy metabolism – beyond osteocalcin. Nature Reviews Rheumatology, 2017, 13, 261-262.	3.5	8
24	Chronic Mild Stress Causes Bone Loss via an Osteoblast-Specific Glucocorticoid-Dependent Mechanism. Endocrinology, 2017, 158, 1939-1950.	1.4	16
25	Loss of the vitamin D receptor in human breast and prostate cancers strongly induces cell apoptosis through downregulation of Wnt/β-catenin signaling. Bone Research, 2017, 5, 17023.	5.4	43
26	The vitamin D receptor is involved in the regulation of human breast cancer cell growth via a ligand-independent function in cytoplasm. Oncotarget, 2017, 8, 26687-26701.	0.8	22
27	MicroRNA-34a functions as a tumor suppressor by directly targeting oncogenic PLCE1 in Kazakh esophageal squamous cell carcinoma. Oncotarget, 2017, 8, 92454-92469.	0.8	24
28	Targeting oncogenic PLCE1 by miR-145 impairs tumor proliferation and metastasis of esophageal squamous cell carcinoma. Oncotarget, 2016, 7, 1777-1795.	0.8	46
29	Transgenic Disruption of Glucocorticoid Signaling in Osteoblasts Attenuates Joint Inflammation in Collagen Antibody–Induced Arthritis. American Journal of Pathology, 2016, 186, 1293-1301.	1.9	14
30	Continuous corticosterone delivery via the drinking water or pellet implantation: A comparative study in mice. Steroids, 2016, 116, 76-82.	0.8	31
31	Glucocorticoids, bone and energy metabolism. Bone, 2016, 82, 64-68.	1.4	31
32	Blockage of Src by Specific siRNA as a Novel Therapeutic Strategy to Prevent Destructive Repair in Steroid-Associated Osteonecrosis in Rabbits. Journal of Bone and Mineral Research, 2015, 30, 2044-2057.	3.1	26
33	Lamin A/C Acts as an Essential Factor in Mesenchymal Stem Cell Differentiation Through the Regulation of the Dynamics of the Wnt/β atenin Pathway. Journal of Cellular Biochemistry, 2015, 116, 2344-2353.	1.2	68
34	Dynamic Frequency of Blood CD4+CD25+ Regulatory T Cells in Rats with Collagen-induced Arthritis. Korean Journal of Physiology and Pharmacology, 2015, 19, 83.	0.6	2
35	Animal Models for Breast Cancer Metastasis to Bone: Opportunities and Limitations. Cancer Investigation, 2015, 33, 459-468.	0.6	12
36	Glucocorticoids Transcriptionally Regulate miR-27b Expression Promoting Body Fat Accumulation Via Suppressing the Browning of White Adipose Tissue. Diabetes, 2015, 64, 393-404.	0.3	100

#	Article	IF	CITATIONS
37	Targeting IL-6 and RANKL signaling inhibits prostate cancer growth in bone. Clinical and Experimental Metastasis, 2014, 31, 921-933.	1.7	36
38	Direct Crosstalk Between Cancer and Osteoblast Lineage Cells Fuels Metastatic Growth in Bone via Auto-Amplification of IL-6 and RANKL Signaling Pathways. Journal of Bone and Mineral Research, 2014, 29, 1938-1949.	3.1	33
39	The osteoblast: An important player in glucocorticoid-induced brown fat lipid accumulation. Obesity Research and Clinical Practice, 2014, 8, 35.	0.8	0
40	Androgen Receptor Inactivation Resulted in Acceleration in Pubertal Mammary Gland Growth, Upregulation of ERα Expression, and Wnt/β-Catenin Signaling in Female Mice. Endocrinology, 2014, 155, 4951-4963.	1.4	22
41	Acute murine antigen-induced arthritis is not affected by disruption of osteoblastic glucocorticoid signalling. BMC Musculoskeletal Disorders, 2014, 15, 31.	0.8	9
42	Disruption of glucocorticoid signaling in chondrocytes delays metaphyseal fracture healing but does not affect normal cartilage and bone development. Bone, 2014, 69, 12-22.	1.4	27
43	Glucocorticoid receptor in prostate epithelia is not required for corticosteroid-induced epithelial hyperproliferation in the mouse prostate. Prostate, 2014, 74, 1068-1078.	1.2	7
44	Glucocorticoids and bone: local effects and systemic implications. Trends in Endocrinology and Metabolism, 2014, 25, 197-211.	3.1	131
45	Characterisation of fibroblast-like synoviocytes from a murine model of joint inflammation. Arthritis Research and Therapy, 2013, 15, R24.	1.6	52
46	Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes and Endocrinology,the, 2013, 1, 59-70.	5.5	168
47	The role of the bone microenvironment in skeletal metastasis. Journal of Bone Oncology, 2013, 2, 47-57.	1.0	66
48	Endogenous Glucocorticoids and Bone. Bone Research, 2013, 1, 107-119.	5.4	37
49	Deletion of Mesenchymal Glucocorticoid Receptor Attenuates Embryonic Lung Development and Abdominal Wall Closure. PLoS ONE, 2013, 8, e63578.	1.1	30
50	Selective glucocorticoid receptor agonists: Glucocorticoid therapy with no regrets?. Journal of Bone and Mineral Research, 2012, 27, 2238-2241.	3.1	18
51	Attenuated Wnt/β-catenin signalling mediates methotrexate chemotherapy-induced bone loss and marrow adiposity in rats. Bone, 2012, 50, 1223-1233.	1.4	57
52	Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. Journal of Clinical Investigation, 2012, 122, 4172-4189.	3.9	163
53	The 18 kDa Translocator Protein (Peripheral Benzodiazepine Receptor) Expression in the Bone of Normal, Osteoprotegerin or Low Calcium Diet Treated Mice. PLoS ONE, 2012, 7, e30623.	1.1	11
54	Corticosterone selectively targets endo-cortical surfaces by an osteoblast-dependent mechanism. Bone, 2011, 49, 733-742.	1.4	56

#	Article	IF	CITATIONS
55	Longâ€Term corticosterone treatment induced lobeâ€specific pathology in mouse prostate. Prostate, 2011, 71, 289-297.	1.2	12
56	Vitamin D deficiency promotes prostate cancer growth in bone. Prostate, 2011, 71, 1012-1021.	1.2	50
57	Exogenous and endogenous glucocorticoids in rheumatic diseases. Arthritis and Rheumatism, 2011, 63, 1-9.	6.7	87
58	Methods in Bone Biology: Cancer and Bone. , 2011, , 83-91.		3
59	Genetic and hormonal control of bone volume, architecture, and remodeling in XXY mice. Journal of Bone and Mineral Research, 2010, 25, 2148-2154.	3.1	23
60	Vitamin D Deficiency Promotes Human Breast Cancer Growth in a Murine Model of Bone Metastasis. Cancer Research, 2010, 70, 1835-1844.	0.4	131
61	Follicle-stimulating hormone increases bone mass in female mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22629-22634.	3.3	83
62	Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis. Bone, 2010, 47, 795-803.	1.4	65
63	Osteoblast-targeted disruption of glucocorticoid signalling does not delay intramembranous bone healing. Steroids, 2010, 75, 282-286.	0.8	13
64	Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Development (Cambridge), 2009, 136, 427-436.	1.2	82
65	Transgenic disruption of glucocorticoid signaling in mature osteoblasts and osteocytes attenuates K/BxN mouse serum–induced arthritis in vivo. Arthritis and Rheumatism, 2009, 60, 1998-2007.	6.7	49
66	Biphasic Glucocorticoid-Dependent Regulation of Wnt Expression and Its Inhibitors in Mature Osteoblastic Cells. Calcified Tissue International, 2009, 85, 538-545.	1.5	78
67	Parathyroid Hormone-Related Protein mRNA and Protein Expression in Multiple Myeloma: A Case Report. Journal of Bone and Mineral Research, 2009, 13, 1640-1643.	3.1	17
68	Endogenous glucocorticoid signalling in osteoblasts is necessary to maintain normal bone structure in mice. Bone, 2009, 45, 61-67.	1.4	64
69	The challenge of continuous exogenous glucocorticoid administration in mice. Steroids, 2009, 74, 245-249.	0.8	36
70	Bone resorption increases tumour growth in a mouse model of osteosclerotic breast cancer metastasis. Clinical and Experimental Metastasis, 2008, 25, 559-567.	1.7	45
71	Biological response of human bone cells to zinc-modified Ca–Si-based ceramics. Acta Biomaterialia, 2008, 4, 1487-1497.	4.1	168
72	Osteoblasts Directly Control Lineage Commitment of Mesenchymal Progenitor Cells through Wnt Signaling. Journal of Biological Chemistry, 2008, 283, 1936-1945.	1.6	134

#	Article	IF	CITATIONS
73	Osteoclast Inhibitory Lectin, an Immune Cell Product That Is Required for Normal Bone Physiology in Vivo. Journal of Biological Chemistry, 2008, 283, 30850-30860.	1.6	28
74	Arthritis and endogenous glucocorticoids: the emerging role of the 11Â-HSD enzymes. Annals of the Rheumatic Diseases, 2007, 67, 1201-1203.	0.5	13
75	Accelerated Bone Resorption, Due to Dietary Calcium Deficiency, Promotes Breast Cancer Tumor Growth in Bone. Cancer Research, 2007, 67, 9542-9548.	0.4	55
76	Osteoclast inhibitory lectin (OCIL) inhibits osteoblast differentiation and function in vitro. Bone, 2007, 40, 305-315.	1.4	34
77	Inhibition of bone resorption, rather than direct cytotoxicity, mediates the anti-tumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis. Bone, 2007, 40, 471-478.	1.4	82
78	Sex Steroids, Not FSH, Influence Bone Mass. Cell, 2006, 127, 1079.	13.5	42
79	Mechanisms of Disease: roles of OPC, RANKL and RANK in the pathophysiology of skeletal metastasis. Nature Clinical Practice Oncology, 2006, 3, 41-49.	4.3	128
80	Mechanisms of Disease: roles of OPC, RANKL and RANK in the pathophysiology of skeletal metastasis. Nature Clinical Practice Oncology, 2006, 3, E1-E1.	4.3	2
81	Localization of Pigment Epithelium-Derived Factor in Growing Mouse Bone. Calcified Tissue International, 2005, 76, 146-153.	1.5	85
82	Parathyroid hormone-related protein production in the lamprey Geotria australis: developmental and evolutionary perspectives. Development Genes and Evolution, 2005, 215, 553-563.	0.4	14
83	Downregulation of uPAR confirms link in growth and metastasis of osteosarcoma. Clinical and Experimental Metastasis, 2005, 22, 643-652.	1.7	54
84	OSTEOCLAST BIOLOGY. , 2005, , 71-93.		1
85	Fibroblast Growth Factor 23: A Phosphatonin Regulating Phosphate Homeostasis?. Endocrinology, 2004, 145, 3084-3086.	1.4	20
86	Characterization of Sugar Binding by Osteoclast Inhibitory Lectin. Journal of Biological Chemistry, 2004, 279, 29043-29049.	1.6	27
87	Isolation of a Human Homolog of Osteoclast Inhibitory Lectin That Inhibits the Formation and Function of Osteoclasts. Journal of Bone and Mineral Research, 2003, 19, 89-99.	3.1	41
88	Osteoclast Inhibitory Lectin, a Family of New Osteoclast Inhibitors. Journal of Biological Chemistry, 2002, 277, 48808-48815.	1.6	46
89	Resistance of Epiphyseal Cartilage to Invasion by Osteosarcoma Is Likely to Be Due to Expression of Antiangiogenic Factors. Pathobiology, 2002, 70, 361-367.	1.9	44
90	A Novel Osteoblast-derived C-type Lectin That Inhibits Osteoclast Formation. Journal of Biological Chemistry, 2001, 276, 14916-14923.	1.6	64

#	Article	IF	CITATIONS
91	Assessment of cellular expression of parathyroid hormone-related protein mRNA and protein in multiple myeloma. Journal of Pathology, 2000, 192, 336-341.	2.1	19
92	Spatial and Temporal Expression of Parathyroid Hormone-Related Protein during Wound Healing. Journal of Investigative Dermatology, 1999, 112, 788-795.	0.3	25
93	Parathyroid Hormone-Related Protein Expression and Secretion in a Skin Organotypic Culture System. Endocrine, 1998, 8, 143-152.	2.2	7
94	Expression of Rat Homeobox Gene, rHOX, in Developing and Adult Tissues in Mice and Regulation of Its mRNA Expression in Osteoblasts by Bone Morphogenetic Protein 2 and Parathyroid Hormone-Related Protein. Molecular Endocrinology, 1998, 12, 1721-1732.	3.7	14
95	Calcitonin receptors, bone sialoprotein and osteopontin are expressed in primary breast cancers. , 1997, 73, 812-815.		88
96	Expression of parathyroid hormone-related protein in cells of osteoblast lineage. , 1996, 166, 94-104.		100
97	rHox: A homeobox gene expressed in osteoblastic cells. Journal of Cellular Biochemistry, 1995, 59, 486-497.	1.2	16
98	Tumor Necrosis Factor α Facilitates Nuclear Actions of Retinoic Acid to Regulate Expression of the Alkaline Phosphatase Gene in Preosteoblasts. Journal of Biological Chemistry, 1995, 270, 8958-8962.	1.6	16
99	Retinoic acid stimulates glucose transporter expression in L6 muscle cells. Molecular and Cellular Endocrinology, 1995, 108, 161-167.	1.6	22
100	Calcitonin receptor isoforms in mouse and rat osteoclasts. Journal of Bone and Mineral Research, 1995, 10, 59-65.	3.1	59
101	Differential effects of transforming growth factor-?1 and bone morphogenetic protein 4 on gene expression and differentiated function of preosteoblasts. Journal of Cellular Physiology, 1993, 155, 112-119.	2.0	57
102	Retinoic acid modulation of mrna levels in malignant, nontransformed, and immortalized osteoblasts.	3.1	73

Journal of Bone and Mineral Research, 1991, 6, 767-777. 102