
Matthew P Sherburne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4307115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photophysics of Localized Deep Defect States in Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry C, 2021, 125, 6975-6982.	1.5	2
2	A discussion on the possible involvement of singlet oxygen in oxygen electrocatalysis. JPhys Energy, 2021, 3, 031004.	2.3	31
3	Active Phase on SrCo _{1–<i>x</i>} Fe _{<i>x</i>} O _{3â^î^} (0 ≤i>x â‰쿄. Perovskite for Water Oxidation: Reconstructed Surface versus Remaining Bulk. Jacs Au, 2021, 1, 108-115.	5) 3.6	47
4	Realizing Catalytic Acetophenone Hydrodeoxygenation with Palladium-Equipped Porous Organic Polymers. ACS Applied Materials & Interfaces, 2020, 12, 50550-50565.	4.0	55
5	The Bright Side and Dark Side of Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry C, 2020, 124, 27340-27355.	1.5	3
6	Vacancy-Ordered Double Perovskite Cs ₂ Tel ₆ Thin Films for Optoelectronics. Chemistry of Materials, 2020, 32, 6676-6684.	3.2	41
7	An efficient hydrogenation catalytic model hosted in a stable hyper-crosslinked porous-organic-polymer: from fatty acid to bio-based alkane diesel synthesis. Green Chemistry, 2020, 22, 2049-2068.	4.6	61
8	Surface Composition Dependent Ligand Effect in Tuning the Activity of Nickel–Copper Bimetallic Electrocatalysts toward Hydrogen Evolution in Alkaline. Journal of the American Chemical Society, 2020, 142, 7765-7775.	6.6	234
9	High-throughput Computational Study of Halide Double Perovskite Inorganic Compounds. Chemistry of Materials, 2019, 31, 5392-5401.	3.2	102
10	Synergistic Effect of High-Frequency Ultrasound with Cupric Oxide Catalyst Resulting in a Selectivity Switch in Glucose Oxidation under Argon. Journal of the American Chemical Society, 2019, 141, 14772-14779.	6.6	77
11	Interface Engineering of Graphene-Supported Cu Nanoparticles Encapsulated by Mesoporous Silica for Size-Dependent Catalytic Oxidative Coupling of Aromatic Amines. ACS Applied Materials & Interfaces, 2019, 11, 11722-11735.	4.0	64
12	Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nature Communications, 2019, 10, 572.	5.8	254
13	Initial Application of Selectedâ€lon Flowâ€Tube Mass Spectrometry to Realâ€Time Product Detection in Electrochemical CO ₂ Reduction. Energy Technology, 2018, 6, 110-121.	1.8	13
14	Metal–Oxygen Hybridization Determined Activity in Spinel-Based Oxygen Evolution Catalysts: A Case Study of ZnFe _{2–<i>x</i>} Cr _{<i>x</i>} O ₄ . Chemistry of Materials, 2018, 30, 6839-6848.	3.2	65
15	Bistable Amphoteric Native Defect Model of Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2018, 9, 3878-3885.	2.1	12
16	Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites. ACS Energy Letters, 2017, 2, 837-845.	8.8	187
17	Tunable and low-loss correlated plasmons in Mott-like insulating oxides. Nature Communications, 2017, 8, 15271.	5.8	42
18	Morphology-Independent Stable White-Light Emission from Self-Assembled Two-Dimensional Perovskites Driven by Strong Exciton–Phonon Coupling to the Organic Framework. Chemistry of Materials, 2017, 29, 3947-3953.	3.2	200

#	Article	IF	CITATIONS
19	Computational Study of Halide Perovskite-Derived A ₂ BX ₆ Inorganic Compounds: Chemical Trends in Electronic Structure and Structural Stability. Chemistry of Materials, 2017, 29, 7740-7749.	3.2	215
20	Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A, 2015, 3, 23829-23832.	5.2	841