
Yasser H A Abdel Wahab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4306682/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Soluble dietary fibre fraction of <i>Trigonella foenum-graecum</i> (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. British Journal of Nutrition, 2007, 97, 514-521.	2.3	210
2	The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutrition Research, 2003, 23, 413-424.	2.9	198
3	The Traditional Plant Treatment, Sambucus nigra (elder), Exhibits Insulin-Like and Insulin-Releasing Actions In Vitro. Journal of Nutrition, 2000, 130, 15-20.	2.9	126
4	Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic β-cells. Journal of Endocrinology, 2006, 189, 127-136.	2.6	112
5	Evaluation of the insulin releasing and antihyperglycaemic activities of <scp>GPR55</scp> lipid agonists using clonal betaâ€cells, isolated pancreatic islets and mice. British Journal of Pharmacology, 2013, 170, 978-990.	5.4	74
6	Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. International Journal of Pharmaceutics, 2016, 499, 236-246.	5.2	67
7	Skin secretions of Rana saharica frogs reveal antimicrobial peptides esculentins-1 and -1B and brevinins-1E and -2EC with novel insulin releasing activity. Journal of Endocrinology, 2006, 188, 1-9.	2.6	61
8	Aqueous extracts of husks of Plantago ovata reduce hyperglycaemia in type 1 and type 2 diabetes by inhibition of intestinal glucose absorption. British Journal of Nutrition, 2006, 96, 131.	2.3	60
9	Insulin secretory actions of extracts of Asparagus racemosus root in perfused pancreas, isolated islets and clonal pancreatic β-cells. Journal of Endocrinology, 2007, 192, 159-168.	2.6	60
10	Evaluation of the insulinâ€releasing and glucoseâ€lowering effects of <scp>GPR120</scp> activation in pancreatic <i>β</i> â€cells. Diabetes, Obesity and Metabolism, 2014, 16, 1128-1139.	4.4	53
11	Vitamin C supplementation decreases insulin glycation and improves glucose homeostasis in obese hyperglycemic (ob/ob) mice. Metabolism: Clinical and Experimental, 2002, 51, 514-517.	3.4	50
12	Glycation of insulin results in reduced biological activity in mice. Acta Diabetologica, 1997, 34, 265-270.	2.5	48
13	Impaired ability of glycated insulin to regulate plasma glucose and stimulate glucose transport and metabolism in mouse abdominal muscle. Biochimica Et Biophysica Acta - General Subjects, 2000, 1523, 128-134.	2.4	48
14	A potent, non-toxic insulin-releasing peptide isolated from an extract of the skin of the Asian frog, Hylarana guntheri (Anura:Ranidae). Regulatory Peptides, 2008, 151, 153-159.	1.9	48
15	Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocin-induced diabetic and incretin-receptor-knockout mice. Diabetologia, 2016, 59, 2674-2685.	6.3	45
16	<i>Terminalia bellirica</i> stimulates the secretion and action of insulin and inhibits starch digestion and protein glycation <i>in vitro</i> . British Journal of Nutrition, 2010, 103, 212-217.	2.3	44
17	Antihyperglycaemic activity of <i>Asparagus racemosus</i> roots is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of cellular insulin action. British Journal of Nutrition, 2012, 107, 1316-1323.	2.3	42
18	Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana palustris. Journal of Endocrinology, 2004, 181, 347-354.	2.6	39

#	Article	IF	CITATIONS
19	Tigerinin-1R: a potent, non-toxic insulin-releasing peptide isolated from the skin of the Asian frog, Hoplobatrachus rugulosus. Diabetes, Obesity and Metabolism, 2011, 13, 1114-1122.	4.4	39
20	Time-correlation between membrane depolarization and intracellular calcium in insulin secreting BRIN-BD11 cells: studies using FLIPR. Cell Calcium, 2004, 36, 43-50.	2.4	38
21	Asparagus adscendens (Shweta musali) stimulates insulin secretion, insulin action and inhibits starch digestion. British Journal of Nutrition, 2006, 95, 576-581.	2.3	38
22	Insulin Releasing Properties of the Temporin Family of Antimicrobial Peptides. Protein and Peptide Letters, 2007, 14, 702-707.	0.9	38
23	A peptide of the phylloseptin family from the skin of the frog Hylomantis lemur (Phyllomedusinae) with potent in vitro and in vivo insulin-releasing activity. Peptides, 2008, 29, 2136-2143.	2.4	37
24	Insulin-releasing properties of the frog skin peptide pseudin-2 and its [Lys ¹⁸]-substituted analogue. Biological Chemistry, 2008, 389, 143-148.	2.5	37
25	Amino terminal glycation of gastric inhibitory polypeptide enhances its insulinotropic action on clonal pancreatic B-cells. Biochimica Et Biophysica Acta - General Subjects, 1998, 1425, 319-327.	2.4	36
26	A glycine-leucine-rich peptide structurally related to the plasticins from skin secretions of the frog Leptodactylus laticeps (Leptodactylidae). Peptides, 2009, 30, 888-892.	2.4	36
27	Effects of Non-Glycated and Glycated Glucagon-Like Peptide-1(7-36) Amide on Glucose Metabolism in Isolated Mouse Abdominal Muscle. Peptides, 1997, 18, 1327-1333.	2.4	35
28	Glycation of glucagon-like peptide-1(7-36)amide: characterization and impaired action on rat insulin secreting cells. Diabetologia, 1998, 41, 1187-1193.	6.3	34
29	Brevinin-2-related Peptide and its [D4K] Analogue Stimulate Insulin Release In Vitro and Improve Glucose Tolerance in Mice Fed a High Fat Diet. Hormone and Metabolic Research, 2010, 42, 652-656.	1.5	34
30	Peptidomic analysis of skin secretions from the bullfrog Lithobates catesbeianus (Ranidae) identifies multiple peptides with potent insulin-releasing activity. Peptides, 2011, 32, 203-208.	2.4	34
31	Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells. Biochemical and Biophysical Research Communications, 2013, 431, 14-18.	2.1	34
32	Activation of GPR119 by fatty acid agonists augments insulin release from clonal β-cells and isolated pancreatic islets and improves glucose tolerance in mice. Biological Chemistry, 2014, 395, 453-464.	2.5	34
33	Peptides from frog skin with potential for development into agents for Type 2 diabetes therapy. Peptides, 2018, 100, 275-281.	2.4	34
34	Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules, 2022, 27, 4278.	3.8	34
35	Caerulein precursor fragment (CPF) peptides from the skin secretions of Xenopus laevis and Silurana epitropicalis are potent insulin-releasing agents. Biochimie, 2013, 95, 429-435.	2.6	29
36	Anti-hyperglycaemic activity of H. rosa-sinensis leaves is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of insulin secretion. Journal of Ethnopharmacology, 2020, 253, 112647.	4.1	29

YASSER H A ABDEL WAHAB

#	Article	IF	CITATIONS
37	In vitro and in vivo insulinotropic properties of the multifunctional frog skin peptide hymenochirin-1B: a structure–activity study. Amino Acids, 2016, 48, 535-547.	2.7	28
38	Pancreatic B-cell dysfunction and glucose toxicity in non-insulin-dependent diabetes. Proceedings of the Nutrition Society, 1997, 56, 243-262.	1.0	27
39	Isolation and characterisation of an unexpected class of insulinotropic peptides in the skin of the frog Agalychnis litodryas. Regulatory Peptides, 2004, 120, 33-38.	1.9	27
40	Caerulein-and xenopsin-related peptides with insulin-releasing activities from skin secretions of the clawed frogs, Xenopus borealis and Xenopus amieti (Pipidae). General and Comparative Endocrinology, 2011, 172, 314-320.	1.8	25
41	Effects of <i>Spirulina platensis</i> on insulin secretion, dipeptidyl peptidase IV activity and both carbohydrate digestion and absorption indicate potential as an adjunctive therapy for diabetes. British Journal of Nutrition, 2020, 124, 1021-1034.	2.3	25
42	Effects of 22 traditional anti-diabetic medicinal plants on DPP-IV enzyme activity and glucose homeostasis in high-fat fed obese diabetic rats. Bioscience Reports, 2021, 41, .	2.4	25
43	Muscarinic receptor subtypes mediate stimulatory and paradoxical inhibitory effects on an insulin-secreting β cell line. Biochimica Et Biophysica Acta - General Subjects, 2002, 1569, 45-50.	2.4	24
44	Insulin-releasing and cytotoxic properties of the frog skin peptide, tigerinin-1R: a structure–activity study. Peptides, 2014, 55, 23-31.	2.4	24
45	Assessment of the potential of temporin peptides from the frog <scp><i>Rana temporaria</i></scp> (Ranidae) as antiâ€diabetic agents. Journal of Peptide Science, 2018, 24, e3065.	1.4	24
46	Diabetic Retinopathy: An Overview on Mechanisms, Pathophysiology and Pharmacotherapy. International Journal of Diabetology, 2022, 3, 159-175.	2.0	24
47	Structure, antihyperglycemic activity and cellular actions of a novel diglycated human insulin. Peptides, 2000, 21, 1519-1526.	2.4	23
48	Skin secretion of the toad Bombina variegata contains multiple insulin-releasing peptides including bombesin and entirely novel insulinotropic structures. Biological Chemistry, 2004, 385, 315-21.	2.5	23
49	Esculentin-2CHa-Related Peptides Modulate Islet Cell Function and Improve Glucose Tolerance in Mice with Diet-Induced Obesity and Insulin Resistance. PLoS ONE, 2015, 10, e0141549.	2.5	23
50	Cooperative enhancement of insulinotropic action of GLP-1 by acetylcholine uncovers paradoxical inhibitory effect of beta cell muscarinic receptor activation on adenylate cyclase activity. Biochemical Pharmacology, 2003, 65, 283-292.	4.4	22
51	A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones. Biological Chemistry, 2006, 387, 941-7.	2.5	22
52	Receptors and Ligands for Autocrine Growth Pathways Are Up-regulated When Pancreatic Cancer Cells Are Adapted to Serum-Free Culture. Pancreas, 2001, 22, 293-298.	1.1	20
53	Novel Insulin-Releasing Peptides in the Skin of Phyllomedusa trinitatis Frog Include 28 Amino Acid Peptide From Dermaseptin BIV Precursor. Pancreas, 2004, 29, 110-115.	1.1	19
54	Insulinotropic Actions of the Frog Skin Hostâ€Defense Peptide Alyteserinâ€2a: A Structure–Activity Study. Chemical Biology and Drug Design, 2013, 82, 196-204.	3.2	18

#	Article	IF	CITATIONS
55	Magainin-AM2 improves glucose homeostasis and beta cell function in high-fat fed mice. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 80-87.	2.4	17
56	Molecular mechanisms mediating the beneficial metabolic effects of [Arg4]tigerinin-1R in mice with diet-induced obesity and insulin resistance. Biological Chemistry, 2016, 397, 753-764.	2.5	17
57	Esculentin-2CHa(1–30) and its analogues: stability and mechanisms of insulinotropic action. Journal of Endocrinology, 2017, 232, 423-435.	2.6	17
58	Evaluation of the Antidiabetic and Insulin Releasing Effects of A. squamosa, Including Isolation and Characterization of Active Phytochemicals. Plants, 2020, 9, 1348.	3.5	17
59	The frog skin host-defense peptide CPF-SE1 improves glucose tolerance, insulin sensitivity and islet function and decreases plasma lipids in high-fat fed mice. European Journal of Pharmacology, 2015, 764, 38-47.	3.5	16
60	Actions of PGLa-AM1 and its [A14K] and [A20K] analogues and their therapeutic potential as anti-diabetic agents. Biochimie, 2017, 138, 1-12.	2.6	16
61	Glucoregulatory, endocrine and morphological effects of [P5K]hymenochirin-1B in mice with diet-induced glucose intolerance and insulin resistance. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 769-781.	3.0	15
62	Anti-hyperglycaemic and insulin-releasing effects of Camellia sinensis leaves and isolation and characterisation of active compounds. British Journal of Nutrition, 2020, 126, 1-15.	2.3	15
63	N-terminal glycation of cholecystokinin-8 abolishes its insulinotropic action on clonal pancreatic B-cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1452, 60-67.	4.1	14
64	Isolation and structural characterisation of a novel 13-amino acid insulin-releasing peptide from the skin secretion of Agalychnis calcarifer. Biological Chemistry, 2005, 386, 581-7.	2.5	14
65	Evidence for inhibitory autocrine effects of proinsulin Câ€peptide on pancreatic <i>β</i> ell function and insulin secretion. Diabetes, Obesity and Metabolism, 2014, 16, 937-946.	4.4	14
66	Beneficial effects of tigerinin-1R on glucose homeostasis and beta cell function in mice with diet-induced obesity-diabetes. Biochimie, 2015, 109, 18-26.	2.6	14
67	GPR39 receptors and actions of trace metals on pancreatic beta cell function and glucose homoeostasis. Acta Diabetologica, 2016, 53, 279-293.	2.5	14
68	Anti-diabetic actions of esculentin-2CHa(1–30) and its stable analogues in a diet-induced model of obesity-diabetes. Amino Acids, 2017, 49, 1705-1717.	2.7	14
69	Tissue expression of DPP-IV in obesity-diabetes and modulatory effects on peptide regulation of insulin secretion. Peptides, 2018, 100, 165-172.	2.4	14
70	Evaluation of the insulinotropic and glucose-lowering actions of zebrafish GIP in mammalian systems: Evidence for involvement of the GLP-1 receptor. Peptides, 2018, 100, 182-189.	2.4	14
71	Insulinotropic and antidiabetic properties of Eucalyptus citriodora leaves and isolation of bioactive phytomolecules. Journal of Pharmacy and Pharmacology, 2021, 73, 1049-1061.	2.4	14
72	Cytotoxic peptides with insulinâ€releasing activities from skin secretions of the Italian stream frog <scp><i>Rana italica</i></scp> (Ranidae). Journal of Peptide Science, 2017, 23, 769-776.	1.4	13

#	Article	IF	CITATIONS
73	Glucagon-related peptides from phylogenetically ancient fish reveal new approaches to the development of dual GCGR and GLP1R agonists for type 2 diabetes therapy. Peptides, 2018, 110, 19-29.	2.4	13
74	Insulin secretory and antidiabetic actions of Heritiera fomes bark together with isolation of active phytomolecules. PLoS ONE, 2022, 17, e0264632.	2.5	10
75	Evidence for a sustained increase in clonal beta-cell basal intracellular Ca2+ levels after incubation in the presence of newly diagnosed Type-1 diabetic patient sera. Possible role in serum-induced inhibition of insulin secretion. Journal of Endocrinology, 2002, 173, 53-62.	2.6	9
76	Isolation and structural characterization of novel Rugosin A-like insulinotropic peptide from the skin secretions of Rana saharica frog. Peptides, 2005, 26, 2117-2123.	2.4	9
77	Evaluation of glycated glucagon-like peptide-1(7-36)amide in intestinal tissue of normal and diabetic animal models. Biochimica Et Biophysica Acta - General Subjects, 2002, 1569, 75-80.	2.4	8
78	[I10W]tigerinin-1R enhances both insulin sensitivity and pancreatic beta cell function and decreases adiposity and plasma triglycerides in high-fat mice. Acta Diabetologica, 2016, 53, 303-315.	2.5	8
79	Insulinotropic, glucose-lowering, and beta-cell anti-apoptotic actions of peptides related to esculentin-1a(1-21).NH2. Amino Acids, 2018, 50, 723-734.	2.7	8
80	Glucagon-like peptides-1 from phylogenetically ancient fish show potent anti-diabetic activities by acting as dual GLP1R and GCGR agonists. Molecular and Cellular Endocrinology, 2019, 480, 54-64.	3.2	8
81	A long-acting, dual-agonist analogue of lamprey GLP-1 shows potent insulinotropic, Î ² -cell protective, and anorexic activities and improves glucose homeostasis in high fat-fed mice. Molecular and Cellular Endocrinology, 2020, 499, 110584.	3.2	8
82	Identification of Multiple Pancreatic and Extra-Pancreatic Pathways Underlying the Glucose-Lowering Actions of Acacia arabica Bark in Type-2 Diabetes and Isolation of Active Phytoconstituents. Plants, 2021, 10, 1190.	3.5	8
83	Magainin-Related Peptides Stimulate Insulin-Release and Improve Glucose Tolerance in High Fat Fed Mice. Protein and Peptide Letters, 2015, 22, 256-263.	0.9	8
84	Mechanisms of action of the antidiabetic peptide [S4K]CPF-AM1 in db/db mice. Journal of Molecular Endocrinology, 2021, 66, 115-128.	2.5	7
85	Insulin-Releasing Peptides. , 2013, , 364-370.		5
86	Beneficial actions of the [A14K] analog of the frog skin peptide PGLa-AM1 in mice with obesity and degenerative diabetes: A mechanistic study. Peptides, 2021, 136, 170472.	2.4	5
87	<i>In vitro</i> and <i>in vivo</i> antihyperglycemic activity of the ethanol extract of <i>Heritiera fomes</i> bark and characterization of pharmacologically active phytomolecules. Journal of Pharmacy and Pharmacology, 2022, 74, 415-425.	2.4	5
88	Functional Enhancement of Electrofusion-derived BRIN-BD11 Insulin-secreting Cells After Implantation into Diabetic Mice. International Journal of Experimental Diabetes Research, 2001, 2, 29-36.	1.1	4
89	Detection of Glycated Gastric Inhibitory Polypeptide within the Intestines of Diabetic Obese (ob/ob) Mice. Endocrine, 2001, 16, 167-172.	2.2	4
90	Insulinotropic activity of the host-defense peptide frenatin 2D: Conformational, structure-function and mechanistic studies. Biochimie, 2019, 156, 12-21.	2.6	4

#	Article	IF	CITATIONS
91	Glucagon from the phylogenetically ancient paddlefish provides a template for the design of a long-acting peptide with effective anti-diabetic and anti-obesity activities. European Journal of Pharmacology, 2020, 878, 173101.	3.5	4
92	12 Glycated IAPP shows a reduced inhibitory action on insulin secretion. Biochemical Society Transactions, 1998, 26, S6-S6.	3.4	3
93	Isolation and structural characterisation of a novel 13-amino acid insulin-releasing peptide from the skin secretion of Agalychnis calcarifer. Biological Chemistry, 2005, 386, 813-813.	2.5	3
94	Conformational analysis and inÂvitro immunomodulatory and insulinotropic properties of the frog skin host-defense peptide rhinophrynin-27 and selected analogs. Biochimie, 2019, 167, 198-206.	2.6	2
95	Effects of longâ€acting analogues of lamprey GLPâ€1 and paddlefish glucagon on alpha―to betaâ€cell transdifferentiation in an insulinâ€deficient transgenic mouse model. Journal of Peptide Science, 2021, 27, e3328.	1.4	2
96	Studies of the effect of glycation of insulin on glucose metabolism in isolated mouse diaphragm muscle. Biochemical Society Transactions, 1994, 22, 238S-238S.	3.4	1
97	Glycation of insulin in a cultured insulin-secreting cell line. Biochemical Society Transactions, 1997, 25, 128S-128S.	3.4	1
98	Effect of glucose and amino acids on insulin-secretion from a novel pancreatic B-cell line produced by electrofusion. Biochemical Society Transactions, 1994, 22, 237S-237S.	3.4	0
99	Characterization of the glycation of human insulin by reversed-phase HPLC. Biochemical Society Transactions, 1994, 22, 239S-239S.	3.4	0