
Marcel O Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4306648/publications.pdf Version: 2024-02-01

MARCEL O SCHMIDT

#	Article	IF	CITATIONS
1	Impaired CXCL12 signaling contributes to resistance of pancreatic cancer subpopulations to T cell-mediated cytotoxicity. Oncolmmunology, 2022, 11, 2027136.	4.6	10
2	An AIB1 Isoform Alters Enhancer Access and Enables Progression of Early-Stage Triple-Negative Breast Cancer. Cancer Research, 2021, 81, 4230-4241.	0.9	11
3	Cardiomyocyte-Specific Circulating Cell-Free Methylated DNA in Esophageal Cancer Patients Treated with Chemoradiation. Gastrointestinal Disorders, 2021, 3, 100-112.	0.8	2
4	Low Dose Chronic Angiotensin II Induces Selective Senescence of Kidney Endothelial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 782841.	3.7	8
5	Loss of ANCO1 repression at AIB1/YAP targets drives breast cancer progression. EMBO Reports, 2020, 21, e48741.	4.5	15
6	Acute Kidney Injury Sensitizes the Brain Vasculature to Ang II (Angiotensin II) Constriction via FGFBP1 (Fibroblast Growth Factor Binding Protein 1). Hypertension, 2020, 76, 1924-1934.	2.7	11
7	Monitoring Cancer Cell Invasion and T-Cell Cytotoxicity in 3D Culture. Journal of Visualized Experiments, 2020, , .	0.3	6
8	Depletion of the Transcriptional Coactivator Amplified in Breast Cancer 1 (AlB1) Uncovers Functionally Distinct Subpopulations in Triple-Negative Breast Cancer. Neoplasia, 2019, 21, 963-973.	5.3	2
9	Single-Molecule Real-Time (SMRT) Full-Length RNA-Sequencing Reveals Novel and Distinct mRNA Isoforms in Human Bone Marrow Cell Subpopulations. Genes, 2019, 10, 253.	2.4	16
10	The Role of Fibroblast Growth Factor-Binding Protein 1 in Skin Carcinogenesis and Inflammation. Journal of Investigative Dermatology, 2018, 138, 179-188.	0.7	23
11	Fibroblast Growth Factor Binding Protein 3 (FGFBP3) impacts carbohydrate and lipid metabolism. Scientific Reports, 2018, 8, 15973.	3.3	12
12	Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene, 2017, 36, 593-605.	5.9	26
13	Abstract B44: Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. , 2016, , .		0
14	Abstract A15: SMC2 role in regulating tumor angiogenesis via FGF signaling. , 2016, , .		0
15	Cell growth density modulates cancer cell vascular invasion via Hippo pathway activity and CXCR2 signaling. Oncogene, 2015, 34, 5879-5889.	5.9	62
16	Utility of a human–mouse xenograft model and in vivo nearâ€infrared fluorescent imaging for studying wound healing. International Wound Journal, 2015, 12, 699-705.	2.9	16
17	The nuclear coactivator amplified in breast cancer 1 maintains tumor-initiating cells during development of ductal carcinoma in situ. Oncogene, 2014, 33, 3033-3042.	5.9	18
18	Abstract B63: Cancer cell invasion determined by cell density-dependent, cytokine-mediated crosstalk. , 2013, , .		0

MARCEL O SCHMIDT

#	Article	IF	CITATIONS
19	Role of the Nuclear Receptor Coactivator AIB1/SRC-3 in Angiogenesis and Wound Healing. American Journal of Pathology, 2012, 180, 1474-1484.	3.8	20
20	Impact of Fibroblast Growth Factor-Binding Protein–1 Expression on Angiogenesis and Wound Healing. American Journal of Pathology, 2011, 179, 2220-2232.	3.8	60
21	Role of the Nuclear Receptor Coactivator AIB1-î"4 Splice Variant in the Control of Gene Transcription. Journal of Biological Chemistry, 2011, 286, 26813-26827.	3.4	17
22	Metallothionein Enhances Angiogenesis and Arteriogenesis by Modulating Smooth Muscle Cell and Macrophage Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 477-482.	2.4	31
23	A distinct role for secreted fibroblast growth factor-binding proteins in development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8585-8590.	7.1	25
24	Escherichia coli SecA Helicase Activity Is Not Required in Vivo for Efficient Protein Translocation or Autogenous Regulation. Journal of Biological Chemistry, 2001, 276, 37076-37085.	3.4	18
25	Nucleotide Binding Activity of SecA Homodimer Is Conformationally Regulated by Temperature and Altered byprlD and azi Mutations, Journal of Biological Chemistry, 2000, 275, 15440-15448.	3.4	43