Tamer Uyar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4305801/publications.pdf

Version: 2024-02-01

270 papers

13,174 citations

14614 66 h-index 97 g-index

275 all docs

275 docs citations

times ranked

275

12842 citing authors

#	Article	IF	CITATIONS
1	Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer, 2008, 49, 5336-5343.	1.8	355
2	Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale, 2014, 6, 10224-10234.	2.8	320
3	Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 2018, 81, 48-59.	5.6	263
4	Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chemistry, 2012, 133, 641-649.	4.2	256
5	Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Research International, 2020, 130, 108927.	2.9	196
6	Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chemistry, 2017, 233, 117-124.	4.2	179
7	Enhanced Thermal Stability of Eugenol by Cyclodextrin Inclusion Complex Encapsulated in Electrospun Polymeric Nanofibers. Journal of Agricultural and Food Chemistry, 2013, 61, 8156-8165.	2.4	176
8	Antibacterial Electrospun Poly(lactic acid) (PLA) Nanofibrous Webs Incorporating Triclosan/Cyclodextrin Inclusion Complexes. Journal of Agricultural and Food Chemistry, 2013, 61, 3901-3908.	2.4	160
9	Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids and Surfaces B: Biointerfaces, 2014, 115, 15-21.	2.5	156
10	Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Physical Chemistry Chemical Physics, 2015, 17, 2960-2986.	1.3	151
11	Polymer–Inorganic Core–Shell Nanofibers by Electrospinning and Atomic Layer Deposition: Flexible Nylon–ZnO Core–Shell Nanofiber Mats and Their Photocatalytic Activity. ACS Applied Materials & Lamp; Interfaces, 2012, 4, 6185-6194.	4.0	150
12	Selective isolation of the electron or hole in photocatalysis: ZnO–TiO2 and TiO2–ZnO core–shell structured heterojunction nanofibers via electrospinning and atomic layer deposition. Nanoscale, 2014, 6, 5735.	2.8	139
13	Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19747-19754.	4.0	138
14	Functional Electrospun Polystyrene Nanofibers Incorporating \hat{l}_{\pm} -, \hat{l}_{\pm} -, and \hat{l}_{\pm} -Cyclodextrins: Comparison of Molecular Filter Performance. ACS Nano, 2010, 4, 5121-5130.	7.3	137
15	Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid. Materials Science and Engineering C, 2016, 63, 231-239.	3.8	135
16	Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Research International, 2018, 106, 280-290.	2.9	134
17	Cyclodextrin nanofibers by electrospinning. Chemical Communications, 2010, 46, 6903.	2.2	131
18	Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Research International, 2014, 62, 424-431.	2.9	131

#	Article	IF	Citations
19	Electrospun zein nanofibers incorporating cyclodextrins. Carbohydrate Polymers, 2012, 90, 558-568.	5.1	129
20	Electrospun porous cellulose acetate fibers from volatile solvent mixture. Materials Letters, 2011, 65, 2291-2294.	1.3	125
21	Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution. Journal of Hazardous Materials, 2013, 261, 286-294.	6.5	125
22	Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: Effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chemical Engineering Journal, 2017, 325, 588-600.	6.6	125
23	Electrospinning of Polymer-free Nanofibers from Cyclodextrin Inclusion Complexes. Langmuir, 2011, 27, 6218-6226.	1.6	123
24	Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale, 2012, 4, 621-631.	2.8	121
25	Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids and Surfaces B: Biointerfaces, 2014, 116, 612-619.	2.5	119
26	Solid Inclusion Complexes of Vanillin with Cyclodextrins: Their Formation, Characterization, and High-Temperature Stability. Journal of Agricultural and Food Chemistry, 2011, 59, 11772-11778.	2.4	118
27	Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs. Food Chemistry, 2020, 317, 126397.	4.2	118
28	Quercetin/ \hat{l}^2 -cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility. Food Chemistry, 2016, 197, 864-871.	4.2	115
29	Cyclodextrin-grafted electrospun cellulose acetate nanofibers via "Click―reaction for removal of phenanthrene. Applied Surface Science, 2014, 305, 581-588.	3.1	113
30	Electrospinning of Cyclodextrin Functional Nanofibers for Drug Delivery Applications. Pharmaceutics, 2019, 11, 6.	2.0	111
31	Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin. International Journal of Pharmaceutics, 2017, 518, 177-184.	2.6	108
32	Molecular filters based on cyclodextrin functionalized electrospun fibers. Journal of Membrane Science, 2009, 332, 129-137.	4.1	103
33	Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chemistry, 2017, 231, 192-201.	4.2	99
34	Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids and Surfaces B: Biointerfaces, 2015, 128, 331-338.	2.5	98
35	One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers. Carbohydrate Polymers, 2014, 99, 808-816.	5.1	95
36	Crystalline Cyclodextrin Inclusion Compounds Formed with Aromatic Guests:  Guest-Dependent Stoichiometries and Hydration-Sensitive Crystal Structures. Crystal Growth and Design, 2006, 6, 1113-1119.	1.4	94

#	Article	IF	CITATIONS
37	Electrospinning of cyclodextrin functionalized polyethylene oxide (PEO) nanofibers. European Polymer Journal, 2009, 45, 1032-1037.	2.6	93
38	Glucose sensors based on electrospun nanofibers: a review. Analytical and Bioanalytical Chemistry, 2016, 408, 1285-1306.	1.9	93
39	Progress in the design and development of "fast-dissolving―electrospun nanofibers based drug delivery systems - A systematic review. Journal of Controlled Release, 2020, 326, 482-509.	4.8	93
40	Fast-Dissolving, Prolonged Release, and Antibacterial Cyclodextrin/Limonene-Inclusion Complex Nanofibrous Webs via Polymer-Free Electrospinning. Journal of Agricultural and Food Chemistry, 2016, 64, 7325-7334.	2.4	92
41	Antioxidant Vitamin E/Cyclodextrin Inclusion Complex Electrospun Nanofibers: Enhanced Water Solubility, Prolonged Shelf Life, and Photostability of Vitamin E. Journal of Agricultural and Food Chemistry, 2017, 65, 5404-5412.	2.4	92
42	Morphological Control of Mesoporosity and Nanoparticles within Co ₃ O ₄ –CuO Electrospun Nanofibers: Quantum Confinement and Visible Light Photocatalysis Performance. ACS Applied Materials & Interfaces, 2017, 9, 35757-35774.	4.0	92
43	Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Advances, 2014, 4, 32249-32255.	1.7	91
44	Fast Dissolving Oral Drug Delivery System Based on Electrospun Nanofibrous Webs of Cyclodextrin/Ibuprofen Inclusion Complex Nanofibers. Molecular Pharmaceutics, 2019, 16, 4387-4398.	2.3	91
45	Enhanced photocatalytic activity of homoassembled ZnO nanostructures on electrospun polymeric nanofibers: A combination of atomic layer deposition and hydrothermal growth. Applied Catalysis B: Environmental, 2014, 156-157, 173-183.	10.8	89
46	Fabrication of Electrospun Eugenol/Cyclodextrin Inclusion Complex Nanofibrous Webs for Enhanced Antioxidant Property, Water Solubility, and High Temperature Stability. Journal of Agricultural and Food Chemistry, 2018, 66, 457-466.	2.4	89
47	Electrospinning of nanofibers from non-polymeric systems: Electrospun nanofibers from native cyclodextrins. Journal of Colloid and Interface Science, 2013, 404, 1-7.	5.0	87
48	Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food and Function, 2016, 7, 3141-3153.	2.1	87
49	Release and antibacterial activity of allyl isothiocyanate/ \hat{l}^2 -cyclodextrin complex encapsulated in electrospun nanofibers. Colloids and Surfaces B: Biointerfaces, 2014, 120, 125-131.	2.5	86
50	Highly Fluorescent Pyrene-Functional Polystyrene Copolymer Nanofibers for Enhanced Sensing Performance of TNT. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21038-21046.	4.0	85
51	Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	84
52	Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Materials Science and Engineering C, 2017, 80, 371-378.	3.8	84
53	Menthol/cyclodextrin inclusion complex nanofibers: Enhanced water-solubility and high-temperature stability of menthol. Journal of Food Engineering, 2018, 224, 27-36.	2.7	82
54	Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids and Surfaces B: Biointerfaces, 2018, 161, 169-176.	2.5	82

#	Article	IF	CITATIONS
55	One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydrate Polymers, 2019, 207, 471-479.	5.1	82
56	Nanograined surface shell wall controlled ZnO–ZnS core–shell nanofibers and their shell wall thickness dependent visible photocatalytic properties. Catalysis Science and Technology, 2017, 7, 1167-1180.	2.1	80
57	Electrospun polystyrene fibers containing high temperature stable volatile fragrance/flavor facilitated by cyclodextrin inclusion complexes. Reactive and Functional Polymers, 2009, 69, 145-150.	2.0	79
58	Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloids and Surfaces B: Biointerfaces, 2019, 178, 129-136.	2.5	78
59	Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes. Nanotechnology, 2009, 20, 125703.	1.3	77
60	Cyclodextrin functionalized poly(methyl methacrylate) (PMMA) electrospun nanofibers for organic vapors waste treatment. Journal of Membrane Science, 2010, 365, 409-417.	4.1	75
61	Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere, 2016, 144, 736-744.	4.2	75
62	Electrochemical synthesis: a novel technique for processing multi-functional coatings. Progress in Organic Coatings, 2003, 47, 365-375.	1.9	74
63	Electrospinning of polymer-free cyclodextrin/geraniol–inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Advances, 2016, 6, 46089-46099.	1.7	74
64	pH-responsive nanofibers with controlled drug release properties. Polymer Chemistry, 2014, 5, 2050-2056.	1.9	71
65	Electrospinning of cyclodextrin functionalized poly(methyl methacrylate) (PMMA) nanofibers. Polymer, 2009, 50, 475-480.	1.8	70
66	Antioxidant electrospun zein nanofibrous web encapsulating quercetin/cyclodextrin inclusion complex. Journal of Materials Science, 2018, 53, 1527-1539.	1.7	70
67	Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery. Materials Science and Engineering C, 2021, 118, 111514.	3.8	69
68	Bioactive Surface Design Based on Functional Composite Electrospun Nanofibers for Biomolecule Immobilization and Biosensor Applications. ACS Applied Materials & Electrospun Nanofibers for Biomolecule Immobilization and Biosensor Applications. ACS Applied Materials & Electrospun Nanofibers for Biomolecule Immobilization and Biosensor Applications.	4.0	68
69	Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydrate Polymers, 2014, 113, 200-207.	5.1	67
70	Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water. Colloids and Surfaces B: Biointerfaces, 2017, 152, 245-251.	2.5	67
71	Antioxidant activity and photostability of \hat{l} ±-tocopherol/ \hat{l} 2-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. European Polymer Journal, 2016, 79, 140-149.	2.6	65
72	Molecular Encapsulation of Cinnamaldehyde within Cyclodextrin Inclusion Complex Electrospun Nanofibers: Fast-Dissolution, Enhanced Water Solubility, High Temperature Stability, and Antibacterial Activity of Cinnamaldehyde. Journal of Agricultural and Food Chemistry, 2019, 67, 11066-11076.	2.4	65

#	Article	IF	CITATIONS
73	Flexible and highly stable electrospun nanofibrous membrane incorporating gold nanoclusters as an efficient probe for visual colorimetric detection of Hg(<scp>ii</scp>). Journal of Materials Chemistry A, 2014, 2, 12717-12723.	5.2	64
74	Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. Materials Science and Engineering C, 2017, 81, 334-340.	3.8	64
75	Microalgae Immobilized by Nanofibrous Web for Removal of Reactive Dyes from Wastewater. Industrial & Dyes from Wastewater.	1.8	62
76	Polymer-free electrospun nanofibers from sulfobutyl ether 7 -beta-cyclodextrin (SBE 7 - $\hat{1}^2$ -CD) inclusion complex with sulfisoxazole: Fast-dissolving and enhanced water-solubility of sulfisoxazole. International Journal of Pharmaceutics, 2017, 531, 550-558.	2.6	62
77	Electrospinning of uniform nanofibers of Polymers of Intrinsic Microporosity (PIM-1): The influence of solution conductivity and relative humidity. Polymer, 2019, 178, 121610.	1.8	62
78	Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity. Journal of Materials Science, 2018, 53, 15837-15849.	1.7	60
79	Metronidazole/Hydroxypropyl-β-Cyclodextrin inclusion complex nanofibrous webs as fast-dissolving oral drug delivery system. International Journal of Pharmaceutics, 2019, 572, 118828.	2.6	58
80	Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Materials Letters, 2011, 65, 2941-2943.	1.3	57
81	Real-time selective visual monitoring of Hg2+ detection at ppt level: An approach to lighting electrospun nanofibers using gold nanoclusters. Scientific Reports, 2015, 5, 10403.	1.6	57
82	Grain boundary engineering in electrospun ZnO nanostructures as promising photocatalysts. CrystEngComm, 2016, 18, 6341-6351.	1.3	57
83	Electrospun crosslinked poly-cyclodextrin nanofibers: Highly efficient molecular filtration thru host-guest inclusion complexation. Scientific Reports, 2017, 7, 7369.	1.6	57
84	Electrohydrodynamic encapsulation of eugenol-cyclodextrin complexes in pullulan nanofibers. Food Hydrocolloids, 2021, 111, 106264.	5.6	57
85	Transformation of polymer-ZnO core–shell nanofibers into ZnO hollow nanofibers: Intrinsic defect reorganization in ZnO and its influence on the photocatalysis. Applied Catalysis B: Environmental, 2015, 176-177, 646-653.	10.8	56
86	Antioxidant $\hat{l}\pm\hat{a}\in t$ ocopherol/ $\hat{l}^3\hat{a}\in c$ yclodextrin $\hat{a}\in c$ "inclusion complex encapsulated poly(lactic acid) electrospun nanofibrous web for food packaging. Journal of Applied Polymer Science, 2017, 134, .	1.3	56
87	Nickel nanoparticles decorated on electrospun polycaprolactone/chitosan nanofibers as flexible, highly active and reusable nanocatalyst in the reduction of nitrophenols under mild conditions. Applied Catalysis B: Environmental, 2017, 203, 549-562.	10.8	56
88	Surface-decorated ZnO nanoparticles and ZnO nanocoating on electrospun polymeric nanofibers by atomic layer deposition for flexible photocatalytic nanofibrous membranes. RSC Advances, 2013, 3, 6817.	1.7	54
89	Atomic Layer Deposition of NiOOH/Ni(OH) ₂ on PIMâ€1â€Based Nâ€Doped Carbon Nanofibers for Electrochemical Water Splitting in Alkaline Medium. ChemSusChem, 2019, 12, 1469-1477.	3.6	54
90	Synthesis of polybenzoxazine/clay nanocomposites by <i>in situ</i> thermal ringâ€opening polymerization using intercalated monomer. Journal of Polymer Science Part A, 2011, 49, 4213-4220.	2.5	53

#	Article	IF	CITATIONS
91	Electrospinning of Cyclodextrin–Pseudopolyrotaxane Nanofibers. Angewandte Chemie - International Edition, 2008, 47, 9108-9111.	7.2	52
92	Toxicity of lanthanum oxide (La ₂ O ₃) nanoparticles in aquatic environments. Environmental Sciences: Processes and Impacts, 2015, 17, 1265-1270.	1.7	52
93	Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. Reactive and Functional Polymers, 2017, 121, 67-75.	2.0	52
94	Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system. Applied Surface Science, 2018, 453, 220-229.	3.1	52
95	Fabrication of cellulose acetate/polybenzoxazine cross-linked electrospun nanofibrous membrane for water treatment. Carbohydrate Polymers, 2017, 177, 378-387.	5.1	51
96	Reorganization and improvement of bulk polymers by processing with their cyclodextrin inclusion compounds. Polymer, 2005, 46, 4762-4775.	1.8	50
97	Electrospun polyester/cyclodextrin nanofibers for entrapment of volatile organic compounds. Polymer Engineering and Science, 2014, 54, 2970-2978.	1.5	50
98	Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast-dissolving drug delivery system. International Journal of Pharmaceutics, 2020, 584, 119395.	2.6	50
99	Removal of aniline from air and water by polymers of intrinsic microporosity (PIM-1) electrospun ultrafine fibers. Journal of Colloid and Interface Science, 2018, 516, 317-324.	5.0	49
100	Efficient ammonium removal from aquatic environments by Acinetobacter calcoaceticus STB1 immobilized on an electrospun cellulose acetate nanofibrous web. Green Chemistry, 2013, 15, 2566.	4.6	48
101	Cyclodextrin-functionalized mesostructured silica nanoparticles for removal of polycyclic aromatic hydrocarbons. Journal of Colloid and Interface Science, 2017, 497, 233-241.	5.0	48
102	Amidoxime functionalized Polymers of Intrinsic Microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water. Applied Surface Science, 2019, 467-468, 648-657.	3.1	48
103	Electrospun Polyethylene Oxide (PEO) Nanofibers Containing Cyclodextrin Inclusion Complex. Journal of Nanoscience and Nanotechnology, 2011, 11, 3949-3958.	0.9	47
104	Electrospun gamma-cyclodextrin (\hat{I}^3 -CD) nanofibers for the entrapment of volatile organic compounds. RSC Advances, 2013, 3, 22891.	1.7	46
105	Efficient Removal of Polycyclic Aromatic Hydrocarbons and Heavy Metals from Water by Electrospun Nanofibrous Polycyclodextrin Membranes. ACS Omega, 2019, 4, 7850-7860.	1.6	46
106	Hydrocortisone/cyclodextrin complex electrospun nanofibers for a fast-dissolving oral drug delivery system. RSC Medicinal Chemistry, 2020, 11, 245-258.	1.7	46
107	Water-soluble non-polymeric electrospun cyclodextrin nanofiber template for the synthesis of metal oxide tubes by atomic layer deposition. RSC Advances, 2014, 4, 61698-61705.	1.7	45
108	Ultrafast on-site selective visual detection of TNT at sub-ppt level using fluorescent gold cluster incorporated single nanofiber. Chemical Communications, 2015, 51, 5590-5593.	2.2	44

#	Article	IF	Citations
109	Sensitive Surface States and their Passivation Mechanism in CdS Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 21609-21618.	1.5	43
110	Electrospun UV-responsive supramolecular nanofibers from a cyclodextrin–azobenzene inclusion complex. Journal of Materials Chemistry C, 2013, 1, 850-855.	2.7	43
111	Water-Insoluble Hydrophilic Electrospun Fibrous Mat of Cyclodextrin–Epichlorohydrin Polymer as Highly Effective Sorbent. ACS Applied Polymer Materials, 2019, 1, 54-62.	2.0	43
112	<i>In situ</i> synthesis of polymer/clay nanocomposites by type II photoinitiated free radical polymerization. Journal of Polymer Science Part A, 2011, 49, 3658-3663.	2.5	42
113	Atomic Layer Deposition of Ruthenium Nanoparticles on Electrospun Carbon Nanofibers: A Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane. ACS Applied Materials & Dehydrogenation of Methylamine Borane.	4.0	41
114	The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning. Nanotechnology, 2009, 20, 125605.	1.3	40
115	Poly-cyclodextrin cryogels with aligned porous structure for removal of polycyclic aromatic hydrocarbons (PAHs) from water. Journal of Hazardous Materials, 2017, 335, 108-116.	6.5	40
116	Polymerization of Styrene in Cyclodextrin Channels: Can Confined Free-Radical Polymerization Yield Stereoregular Polystyrene?. Macromolecular Rapid Communications, 2004, 25, 1382-1386.	2.0	39
117	Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling. Journal of Membrane Science, 2020, 594, 117460.	4.1	39
118	Fluorescence from graphene oxide and the influence of ionic, $\tilde{l}\in \tilde{a}\in \tilde{l}$ interactions and heterointerfaces: electron or energy transfer dynamics. Physical Chemistry Chemical Physics, 2014, 16, 21183-21203.	1.3	38
119	Bioactive peptide functionalized aligned cyclodextrin nanofibers for neurite outgrowth. Journal of Materials Chemistry B, 2017, 5, 517-524.	2.9	38
120	Thermal degradation of polycarbonate, poly(vinyl acetate) and their blends. Polymer Degradation and Stability, 2006, 91, 2960-2967.	2.7	37
121	Electrospun polymeric nanofibrous composites containing TiO2 short nanofibers. Materials Chemistry and Physics, 2011, 129, 701-704.	2.0	37
122	Immobilization of gold nanoclusters inside porous electrospun fibers for selective detection of Cu(II): A strategic approach to shielding pristine performance. Scientific Reports, 2015, 5, 15608.	1.6	37
123	"Nanotraps―in porous electrospun fibers for effective removal of lead(<scp>ii</scp>) in water. Journal of Materials Chemistry A, 2016, 4, 2484-2493.	5.2	37
124	Hydrochromic carbon dots as smart sensors for water sensing in organic solvents. Nanoscale Advances, 2019, 1, 4258-4267.	2.2	36
125	Pyrolysis mass spectrometry analysis of poly(vinyl acetate), poly(methyl methacrylate) and their blend coalesced from inclusion compounds formed with \hat{l}^3 -cyclodextrin. Polymer Degradation and Stability, 2006, 91, 1-11.	2.7	35
126	Polysulfone/Clay Nanocomposites by in situ Photoinduced Crosslinking Polymerization. Macromolecular Materials and Engineering, 2011, 296, 1101-1106.	1.7	35

#	Article	IF	CITATIONS
127	Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web. RSC Advances, 2015, 5, 86867-86874.	1.7	35
128	Antibacterial nanofibers of pullulan/tetracycline-cyclodextrin inclusion complexes for Fast-Disintegrating oral drug delivery. Journal of Colloid and Interface Science, 2022, 610, 321-333.	5.0	35
129	Fast-dissolving electrospun nanofibrous films of paracetamol/cyclodextrin inclusion complexes. Applied Surface Science, 2019, 492, 626-633.	3.1	34
130	Encapsulation and Stabilization of α-Lipoic Acid in Cyclodextrin Inclusion Complex Electrospun Nanofibers: Antioxidant and Fast-Dissolving α-Lipoic Acid/Cyclodextrin Nanofibrous Webs. Journal of Agricultural and Food Chemistry, 2019, 67, 13093-13107.	2.4	34
131	Spectroscopic investigation of oxidation of p-toluene sulfonic acid doped polypyrrole. Synthetic Metals, 2001, 123, 335-342.	2.1	33
132	The Solid Channel Structure Inclusion Complex Formed Between Guest Styrene and Host \hat{I}^3 -Cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 109-121.	1.6	33
133	Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water. Chemosphere, 2017, 184, 393-399.	4.2	33
134	Functionalized Electrospun Nanofibers as a Versatile Platform for Colorimetric Detection of Heavy Metal Ions in Water: A Review. Materials, 2020, 13, 2421.	1.3	33
135	Rational synthesis of Na and S co-catalyst TiO ₂ -based nanofibers: presence of surface-layered TiS ₃ shell grains and sulfur-induced defects for efficient visible-light driven photocatalysis. Journal of Materials Chemistry A, 2017, 5, 14206-14219.	5.2	32
136	Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2. Analytical and Bioanalytical Chemistry, 2016, 408, 1347-1355.	1.9	31
137	Efficient Encapsulation of Citral in Fast-Dissolving Polymer-Free Electrospun Nanofibers of Cyclodextrin Inclusion Complexes: High Thermal Stability, Longer Shelf-Life, and Enhanced Water Solubility of Citral. Nanomaterials, 2018, 8, 793.	1.9	31
138	The use of pyrolysis mass spectrometry to investigate polymerization and degradation processes of methyl amine-based benzoxazine. Polymer Testing, 2010, 29, 520-526.	2.3	30
139	Investigation of polymerization of benzoxazines and thermal degradation characteristics of polybenzoxazines via direct pyrolysis mass spectrometry. Polymer International, 2012, 61, 1532-1541.	1.6	30
140	Electrospun nanofibers from cyclodextrin inclusion complexes with cineole and <i>p</i> àê€eymene: enhanced water solubility and thermal stability. International Journal of Food Science and Technology, 2018, 53, 112-120.	1.3	30
141	Intimate blending of binary polymer systems from their common cyclodextrin inclusion compounds. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2578-2593.	2.4	29
142	Defect related emission versus intersystem crossing: blue emitting ZnO/graphene oxide quantum dots. Nanoscale, 2015, 7, 16110-16118.	2.8	29
143	Surface Decoration of Pt Nanoparticles via ALD with TiO2 Protective Layer on Polymeric Nanofibers as Flexible and Reusable Heterogeneous Nanocatalysts. Scientific Reports, 2017, 7, 13401.	1.6	29
144	Facile and green synthesis of palladium nanoparticles loaded into cyclodextrin nanofibers and their catalytic application in nitroarene hydrogenation. New Journal of Chemistry, 2019, 43, 3146-3152.	1.4	29

#	Article	IF	CITATIONS
145	Electrospinning of Cyclodextrin Nanofibers: The Effect of Process Parameters. Journal of Nanomaterials, 2020, 2020, 1-10.	1.5	29
146	Encapsulation of camphor in cyclodextrin inclusion complex nanofibers via polymer-free electrospinning: enhanced water solubility, high temperature stability, and slow release of camphor. Journal of Materials Science, 2018, 53, 5436-5449.	1.7	28
147	Synthesis and characterization of bioâ€based benzoxazines derived from thymol. Journal of Applied Polymer Science, 2019, 136, 47371.	1.3	28
148	Molecular mixing of incompatible polymers through formation of and coalescence from their common crystalline cyclodextrin inclusion compounds. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 4207-4224.	2.4	27
149	Rational Design and Development of Electrospun Nanofibrous Biohybrid Composites. ACS Applied Bio Materials, 2019, 2, 3128-3143.	2.3	27
150	Green Electrospinning of Chitosan/Pectin Nanofibrous Films by the Incorporation of Cyclodextrin/Curcumin Inclusion Complexes: pH-Responsive Release and Hydrogel Features. ACS Sustainable Chemistry and Engineering, 2022, 10, 4758-4769.	3.2	27
151	An intimate polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate) ternary blend via coalescence from their common inclusion compound with ?-cyclodextrin. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 4182-4194.	2.4	26
152	Polymerisation and degradation of an aromatic amine-based naphthoxazine. Polymer Degradation and Stability, 2008, 93, 2096-2103.	2.7	26
153	In situ synthesis of biomolecule encapsulated gold-cross-linked poly(ethylene glycol) nanocomposite as biosensing platform: A model study. Bioelectrochemistry, 2010, 79, 211-217.	2.4	26
154	Green and one-step synthesis of gold nanoparticles incorporated into electrospun cyclodextrin nanofibers. RSC Advances, 2013, 3, 10197.	1.7	26
155	Fabrication of flexible polymer–GaN core–shell nanofibers by the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition. Journal of Materials Chemistry C, 2015, 3, 5199-5206.	2.7	26
156	Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: antioxidant and fast-dissolving properties. Food and Function, 2020, 11, 7626-7637.	2.1	26
157	Polystyrenes in channels. Polymer, 2004, 45, 1345-1347.	1.8	25
158	Polymerization of styrene in \hat{I}^3 -cyclodextrin channels: Lightly rotaxanated polystyrenes with altered stereosequences. Polymer, 2006, 47, 6948-6955.	1.8	25
159	Synthesis and Characterization of Polysulfone/ <scp>POSS</scp> Hybrid Networks by Photoinduced Crosslinking Polymerization. Macromolecular Materials and Engineering, 2013, 298, 1117-1123.	1.7	25
160	Selective and Efficient Removal of Volatile Organic Compounds by Channel-type Gamma-Cyclodextrin Assembly through Inclusion Complexation. Industrial & Engineering Chemistry Research, 2017, 56, 7345-7354.	1.8	25
161	Characterization of electrochemically synthesized p-toluene sulfonic acid doped polypyrrole by direct insertion probe pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2002, 64, 1-13.	2.6	24
162	Templateâ€Based Synthesis of Aluminum Nitride Hollow Nanofibers Via Plasmaâ€Enhanced Atomic Layer Deposition. Journal of the American Ceramic Society, 2013, 96, 916-922.	1.9	24

#	Article	IF	CITATIONS
163	Electrospun nylon 6,6 nanofibers functionalized with cyclodextrins for removal of toluene vapor. Journal of Applied Polymer Science, 2015, 132, .	1.3	24
164	Bacteria-immobilized electrospun fibrous polymeric webs for hexavalent chromium remediation in water. International Journal of Environmental Science and Technology, 2016, 13, 2057-2066.	1.8	24
165	Preparation of fluorinated methacrylate/clay nanocomposite via ⟨i⟩inâ€situ⟨/i⟩ polymerization: Characterization, structure, and properties. Journal of Polymer Science Part A, 2017, 55, 411-418.	2.5	24
166	Influence of Hydrogen-Bonding Additives on Electrospinning of Cyclodextrin Nanofibers. ACS Omega, 2018, 3, 18311-18322.	1.6	24
167	Electrospinning of cyclodextrins: hydroxypropyl-alpha-cyclodextrin nanofibers. Journal of Materials Science, 2020, 55, 404-420.	1.7	24
168	Characterisation of internal morphologies in electrospun fibers by X-ray tomographic microscopy. Nanoscale, 2011, 3, 3594.	2.8	23
169	Polymer/clay nanocomposites through multiple hydrogenâ€bonding interactions. Journal of Polymer Science Part A, 2015, 53, 650-658.	2.5	23
170	Superhydrophobic Hexamethylene Diisocyanate Modified Hydrolyzed Polymers of Intrinsic Microporosity Electrospun Ultrafine Fibrous Membrane for the Adsorption of Organic Compounds and Oil/Water Separation. ACS Applied Nano Materials, 2018, 1, 1631-1640.	2.4	23
171	Electrospinning Combined with Atomic Layer Deposition to Generate Applied Nanomaterials: A Review. ACS Applied Nano Materials, 2020, 3, 6186-6209.	2.4	23
172	Metal-free N-doped ultrafine carbon fibers from electrospun Polymers of Intrinsic Microporosity (PIM-1) based fibers for oxygen reduction reaction. Journal of Power Sources, 2020, 451, 227799.	4.0	23
173	Promotional Effect of Cu ₂ S–ZnS Nanograins as a Shell Layer on ZnO Nanorod Arrays for Boosting Visible Light Photocatalytic H ₂ Evolution. Journal of Physical Chemistry C, 2020, 124, 3610-3620.	1.5	23
174	Functionalized Electrospun Nanofibers as Colorimetric Sensory Probe for Mercury Detection: A Review. Sensors, 2019, 19, 4763.	2.1	22
175	Atomic layer deposition of Co3O4 nanocrystals on N-doped electrospun carbon nanofibers for oxygen reduction and oxygen evolution reactions. Nanoscale Advances, 2019, 1, 1224-1231.	2.2	22
176	Pd nanocube decoration onto flexible nanofibrous mats of core–shell polymer–ZnO nanofibers for visible light photocatalysis. New Journal of Chemistry, 2017, 41, 4145-4156.	1.4	21
177	Recent progress on designing electrospun nanofibers for colorimetric biosensing applications. Current Opinion in Biomedical Engineering, 2020, 13, 1-8.	1.8	21
178	Colon targeted delivery of niclosamide from \hat{l}^2 -cyclodextrin inclusion complex incorporated electrospun Eudragit \hat{A}^{\otimes} L100 nanofibers. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111391.	2.5	21
179	Fabrication of hafnia hollow nanofibers by atomic layer deposition using electrospun nanofiber templates. Journal of Alloys and Compounds, 2013, 559, 146-151.	2.8	20
180	Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition. APL Materials, 2014, 2, 096109.	2.2	20

#	Article	IF	Citations
181	Nanohybrid structured RuO ₂ /Mn ₂ O ₃ /CNF as a catalyst for Na–O ₂ batteries. Nanotechnology, 2018, 29, 475401.	1.3	20
182	Nanostructuring polymers with cyclodextrins. Polymers for Advanced Technologies, 2005, 16, 269-275.	1.6	19
183	In situsynthesis of A3-type star polymer/clay nanocomposites by atom transfer radical polymerization. Journal of Polymer Science Part A, 2013, 51, 5257-5262.	2.5	19
184	Main-chain polybenzoxazine nanofibers via electrospinning. Polymer, 2014, 55, 556-564.	1.8	19
185	Amorphous to Tetragonal Zirconia Nanostructures and Evolution of Valence and Core Regions. Journal of Physical Chemistry C, 2015, 119, 23268-23273.	1.5	19
186	ZnO–TiO ₂ composites and ternary ZnTiO ₃ electrospun nanofibers: the influence of annealing on the photocatalytic response and reusable functionality. CrystEngComm, 2018, 20, 5801-5813.	1.3	19
187	Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite. Composites Communications, 2019, 12, 33-38.	3.3	19
188	Thermal and structural characterization of polypyrrole by direct-insertion probe pyrolysis mass spectrometry. Synthetic Metals, 2001, 119, 307-308.	2.1	17
189	Evaluation of contact time and fiber morphology on bacterial immobilization for development of novel surfactant degrading nanofibrous webs. RSC Advances, 2015, 5, 102750-102758.	1.7	17
190	Poly(epsilon caprolactone)/clay nanocomposites via host–guest chemistry. European Polymer Journal, 2015, 71, 259-267.	2.6	17
191	Development of superhydrophobic electrospun fibrous membrane of polymers of intrinsic microporosity (PIM-2). European Polymer Journal, 2019, 112, 87-94.	2.6	17
192	Highly selective surface adsorption-induced efficient photodegradation of cationic dyes on hierarchical ZnO nanorod-decorated hydrolyzed PIM-1 nanofibrous webs. Journal of Colloid and Interface Science, 2020, 562, 29-41.	5.0	17
193	Thermal degradation of poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2002, 64, 379-393.	2.6	16
194	The Nano-threading of Polymers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 185-192.	1.6	16
195	Polystyrene/clay nanocomposites by atom transfer radical nitroxide coupling chemistry. Journal of Polymer Science Part A, 2013, 51, 1024-1028.	2.5	16
196	Pyrolysis mass spectrometry analysis of polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate) ternary blends. Polymer Degradation and Stability, 2007, 92, 32-43.	2.7	15
197	Characterization of βâ€cyclodextrin modified SiO ₂ . Surface and Interface Analysis, 2011, 43, 884-892.	0.8	15
198	Synthesis, characterization, and thermal properties of alkylâ€functional naphthoxazines. Journal of Applied Polymer Science, 2013, 127, 3114-3123.	1.3	15

#	Article	IF	CITATIONS
199	Thermal degradation processes of poly(carbonate) and poly(methyl methacrylate) in blends coalesced either from their common inclusion compound formed with \hat{i}^3 -cyclodextrin or precipitated from their common solution. Polymer Degradation and Stability, 2006, 91, 2471-2481.	2.7	14
200	Self-aligned and bundled electrospun fibers prepared from blends of polystyrene (PS) and poly(methyl) Tj ETQq0	0 0 <u>r</u> gBT	Overlock 10
201	Improving hydrophobicity on polyurethane-based synthetic leather through plasma polymerization for easy care effect. Journal of Coatings Technology Research, 2013, 10, 549-558.	1.2	14
202	Monodispersed, Highly Interactive Facet (111)â€Oriented Pd Nanograins by ALD onto Freeâ€Standing and Flexible Electrospun Polymeric Nanofibrous Webs for Catalytic Application. Advanced Materials Interfaces, 2017, 4, 1700640.	1.9	14
203	Electrospinning of Ultrafine Poly(1-trimethylsilyl-1-propyne) [PTMSP] Fibers: Highly Porous Fibrous Membranes for Volatile Organic Compound Removal. ACS Applied Polymer Materials, 2019, 1, 787-796.	2.0	14
204	Orally Fast Disintegrating Cyclodextrin/Prednisolone Inclusion-Complex Nanofibrous Webs for Potential Steroid Medications. Molecular Pharmaceutics, 2021, 18, 4486-4500.	2.3	14
205	Photoluminescent electrospun polymeric nanofibers incorporating germanium nanocrystals. Reactive and Functional Polymers, 2013, 73, 1262-1267.	2.0	13
206	Cross-linked main-chain polybenzoxazine nanofibers by photo and thermal curing; stable at high temperatures and harsh acidic conditions. Polymer, 2016, 84, 72-80.	1.8	13
207	Fluorescent Si QD decoration onto a flexible polymeric electrospun nanofibrous mat for the colorimetric sensing of TNT. Journal of Materials Chemistry C, 2017, 5, 1816-1825.	2.7	13
208	Polyhedral oligomeric silsesquioxane-based hybrid networks obtained via thiol-epoxy click chemistry. Iranian Polymer Journal (English Edition), 2017, 26, 405-411.	1.3	13
209	Applications of core-shell nanofibers. , 2018, , 375-404.		13
210	Crosslinked PolyCyclodextrin/PolyBenzoxazine electrospun microfibers for selective removal of methylene blue from an aqueous system. European Polymer Journal, 2019, 119, 311-321.	2.6	13
211	Cyclodextrin short-nanofibers using sacrificial electrospun polymeric matrix for VOC removal. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 90, 135-141.	0.9	12
212	Atomic layer deposition of palladium nanoparticles on a functional electrospun poly-cyclodextrin nanoweb as a flexible and reusable heterogeneous nanocatalyst for the reduction of nitroaromatic compounds. Nanoscale Advances, 2019, 1, 4082-4089.	2.2	12
213	Functional Textiles $\hat{a} \in \mathbb{C}^m$ From Research and Development to Innovations and Industrial Uptake. Autex Research Journal, 2014, 14, 219-225.	0.6	11
214	Lowâ€temperature hollow cathode plasmaâ€assisted atomic layer deposition of crystalline IIIâ€nitride thin films and nanostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 394-398.	0.8	11
215	Electrospun MesoporousÂComposite CuOâ^'Co ₃ O ₄ /N― TiO _{2Â} Nanofibers as Efficient Visible Light Photocatalysts. ChemistrySelect, 2017, 2, 7031-7043.	0.7	11
216	Associative behaviour and effect of functional groups on the fluorescence of graphene oxide. Physical Chemistry Chemical Physics, 2018, 20, 7559-7569.	1.3	11

#	Article	IF	CITATIONS
217	Conscientious Design of Zn-S/Ti-N Layer by Transformation of ZnTiO ₃ on Electrospun ZnTiO ₃ @TiO ₂ Nanofibers: Stability and Reusable Photocatalytic Performance under Visible Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 12980-12992.	3.2	11
218	Novel Supramolecular Photocatalyst Based on Conjugation of Cucurbit[7]uril to Nonâ€Metallated Porphyrin for Electrophotocatalytic Hydrogen Generation from Water Splitting. ChemCatChem, 2019, 11, 2994-2999.	1.8	11
219	Graphene oxide-doped PEDOT:PSS as hole transport layer in inverted bulk heterojunction solar cell. Journal of Materials Science: Materials in Electronics, 2020, 31, 3576-3584.	1.1	11
220	PYROLYSIS OF BF4- DOPED POLYPYRROLE BY DIRECT INSERTION PROBE PYROLYSIS MASS SPECTROMETRY. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1141-1150.	1.2	10
221	Evaluation of fiber diameter and morphology differences for electrospun fibers on bacterial immobilization and bioremediation performance. International Biodeterioration and Biodegradation, 2017, 120, 66-70.	1.9	10
222	Orally Fast-Disintegrating Resveratrol/Cyclodextrin Nanofibrous Films as a Potential Antioxidant Dietary Supplement. ACS Food Science & Technology, 2022, 2, 568-580.	1.3	10
223	Ondansetron/Cyclodextrin inclusion complex nanofibrous webs for potential orally fast-disintegrating antiemetic drug delivery. International Journal of Pharmaceutics, 2022, 623, 121921.	2.6	10
224	Noncovalent functionalization of a nanofibrous network with a bio-inspired heavy metal binding peptide. RSC Advances, 2013, 3, 24215.	1.7	9
225	Tuning the degree of oxidation and electron delocalization of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) with solid-electrolyte. Applied Surface Science, 2017, 419, 770-777.	3.1	9
226	Multifunctional electrospun polymeric nanofibrous mats for catalytic reduction, photocatalysis and sensing. Nanoscale, 2017, 9, 9606-9614.	2.8	9
227	Electrospinning., 2017,, 3-41.		9
228	Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers. Nanotechnology, 2018, 29, 245602.	1.3	9
229	Fabrication of Thermally Crosslinked Hydrolyzed Polymers of Intrinsic Microporosity (HPIM)/Polybenzoxazine Electrospun Nanofibrous Membranes. Macromolecular Chemistry and Physics, 2019, 220, 1800326.	1.1	9
230	Thermal Degradation Mechanisms of Polybenzoxazines. , 2011, , 287-305.		8
231	Excitation dependent recombination studies on SnO2/TiO2 electrospun nanofibers. RSC Advances, 2015, 5, 66367-66375.	1.7	8
232	Surface ionic states and structure of titanate nanotubes. RSC Advances, 2015, 5, 82977-82982.	1.7	8
233	In situ preparation of thermoset/clay nanocomposites via thiol-epoxy click chemistry. Polymer Bulletin, 2018, 75, 4901-4911.	1.7	8
234	Hierarchical electrospun PIM nanofibers decorated with ZnO nanorods for effective pollutant adsorption and photocatalytic degradation. Materials Today, 2018, 21, 989-990.	8.3	8

#	Article	IF	CITATIONS
235	Electrospun Fe ₂ O ₃ Entrenched SiO ₂ Supported N and S Dual Incorporated TiO ₂ Nanofibers Derived from Mixed Polymeric Template/Surfactant: Enriched Mesoporosity within Nanofibers, Effective Charge Separation, and Visible Light Photocatalysis Activity. Industrial & Engineering Chemistry Research, 2019, 58, 12535-12550.	1.8	8
236	Water-insoluble polymer-free uniform nanofibers of peracetylated cyclodextrin by electrospinning. Journal of Materials Science, 2020, 55, 11752-11762.	1.7	8
237	Single nozzle electrospinning promoted hierarchical shell wall structured zinc oxide hollow tubes for water remediation. Journal of Colloid and Interface Science, 2021, 593, 162-171.	5.0	8
238	Electrospun nanofibrous materials for wound healing applications., 2017,, 147-177.		7
239			

#	Article	IF	CITATIONS
253	Fluoride Substitution on Polypyrrole during Electrochemical Synthesis in the Presence of N(Bu)4BF4. Macromolecular Rapid Communications, 2001, 22, 199-201.	2.0	4
254	RNA-mediated, green synthesis of palladium nanodendrites for catalytic reduction of nitroarenes. Journal of Colloid and Interface Science, 2019, 544, 206-216.	5.0	4
255	Influence of salt addition on polymer-free electrospinning of cyclodextrin nanofibers. Nano Express, 2020, 1, 020041.	1.2	4
256	Investigation of Chlorinated Poly(Propylene Oxide) and Polyepichlorohydrin by Direct Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1399-1407.	1.2	3
257	Electrospun Fluorescent Nanofibers for Explosive Detection. Nanoscience and Technology, 2015, , 179-204.	1.5	3
258	Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles. Beilstein Journal of Nanotechnology, 2018, 9, 693-703.	1.5	3
259	General Strategy for Fabrication of Ordered One Dimensional Inorganic Structures by Electrospinning: Structural Evolution From Belt to Solid via Hollow Tubes. Advanced Engineering Materials, 2021, 23, 2001129.	1.6	3
260	Antibacterial Activity of Cyclodextrinâ€Azo Dye Inclusion Complex Encapsulated Electrospun Polycaprolactone Nanofibers. ChemistrySelect, 2021, 6, 10440-10446.	0.7	3
261	Hollow-cathode plasma-assisted atomic layer deposition: A novel route for low-temperature synthesis of crystalline III-nitride thin films and nanostructures. , 2015, , .		2
262	Electrospun Filters for Organic Pollutants Removal. , 2018, , 115-150.		2
263	Neuroregenerative Nanotherapeutics. Pancreatic Islet Biology, 2019, , 143-181.	0.1	2
264	Surface Functionalized Electrospun Nanofibers for Removal of Toxic Pollutants in Water. , 2019, , 189-213.		2
265	ZnO Nanostructures on Electrospun Nanofibers by Atomic Layer Deposition/Hydrothermal Growth and Their Photocatalytic Activity. Materials Research Society Symposia Proceedings, 2014, 1675, 9-14.	0.1	1
266	Polybenzoxazine-Based Nanofibers by Electrospinning. , 2017, , 643-671.		1
267	Preparation of Al2O3 and AlN Nanotubes by Atomic Layer Deposition. Materials Research Society Symposia Proceedings, 2012, 1408, 133.	0.1	0
268	Polymeric nanofibers decorated with reduced graphene oxide nanoflakes. Materials Today, 2017, 20, 332-333.	8.3	0
269	Nanofibrous Catalysts: Monodispersed, Highly Interactive Facet (111)â€Oriented Pd Nanograins by ALD onto Freeâ€Standing and Flexible Electrospun Polymeric Nanofibrous Webs for Catalytic Application (Adv. Mater. Interfaces 24/2017). Advanced Materials Interfaces, 2017, 4, 1770126.	1.9	0
270	Novel Supramolecular Photocatalyst Based on Conjugation of Cucurbit[7]uril to Nonâ€Metallated Porphyrin for Electrophotocatalytic Hydrogen Generation from Water Splitting. ChemCatChem, 2019, 11, 2940-2940.	1.8	0