Stefan Lis

List of Publications by Citations

Source: https://exaly.com/author-pdf/4305783/stefan-lis-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,077 252 37 54 g-index h-index citations papers 261 6.11 5,778 4.2 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
252	Luminescence Properties of Materials with Eu(III) Complexes: Role of Ligand, Coligand, Anion, and Matrix. <i>Chemistry of Materials</i> , 2003 , 15, 656-663	9.6	166
251	Energy transfer in solution of lanthanide complexes. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 150, 233-247	4.7	161
250	Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates-LaPO/YPO:Yb-Tm. <i>ACS Applied Materials & Description of State (Note of State of Sta</i>	9.5	157
249	Luminescence spectroscopy of lanthanide(III) ions in solution. <i>Journal of Alloys and Compounds</i> , 2002 , 341, 45-50	5.7	127
248	Structural and spectroscopic properties of LaOF:Eu3+ nanocrystals prepared by the sol-gel Pechini method. <i>Inorganic Chemistry</i> , 2011 , 50, 8112-20	5.1	123
247	Upconverting Lanthanide Fluoride Core@Shell Nanorods for Luminescent Thermometry in the First and Second Biological Windows: ENaYF:Yb- Er@SiO Temperature Sensor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 13389-13396	9.5	114
246	Lifetime nanomanometry - high-pressure luminescence of up-converting lanthanide nanocrystals - SrF:Yb,Er. <i>Nanoscale</i> , 2017 , 9, 16030-16037	7.7	81
245	Multifunctionality of GdPO4:Yb3+,Tb3+ nanocrystals Iluminescence and magnetic behaviour. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22989		71
244	Upconverting lanthanide doped fluoride NaLuF4:Yb3+-Er3+-Ho3+ - optical sensor for multi-range fluorescence intensity ratio (FIR) thermometry in visible and NIR regions. <i>Journal of Luminescence</i> , 2018 , 201, 104-109	3.8	69
243	Influence of Matrix on the Luminescent and Structural Properties of Glycerine-Capped, Tb3+-Doped Fluoride Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 17188-17196	3.8	67
242	Tunable Luminescence of Sr2CeO4:M2+ (M = Ca, Mg, Ba, Zn) and Sr2CeO4:Ln3+ (Ln = Eu, Dy, Tm) Nanophosphors. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3219-3226	3.8	66
241	Structural, spectroscopic, and magnetic properties of Eu3+-doped GdVO4 nanocrystals synthesized by a hydrothermal method. <i>Inorganic Chemistry</i> , 2014 , 53, 12243-52	5.1	63
240	Optical Vacuum Sensor Based on Lanthanide Upconversion[luminescence Thermometry as a Tool for Ultralow Pressure Sensing. <i>Advanced Materials Technologies</i> , 2020 , 5, 1901091	6.8	60
239	Optical Pressure Sensor Based on the Emission and Excitation Band Width (fwhm) and Luminescence Shift of Ce-Doped Fluorapatite-High-Pressure Sensing. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 4131-4138	9.5	55
238	Revision of structural properties of GdBO3 nanopowders doped with Eu3+ ions through spectroscopic studies. <i>Dalton Transactions</i> , 2012 , 41, 5824-31	4.3	53
237	Aqueous solutions of uranium(VI) as studied by time-resolved emission spectroscopy: a round-robin test. <i>Applied Spectroscopy</i> , 2003 , 57, 1027-38	3.1	51
236	Hydrothermal synthesis and structural and spectroscopic properties of the new triclinic form of GdBO3:Eu3+ nanocrystals. <i>Inorganic Chemistry</i> , 2013 , 52, 4934-40	5.1	50

235	Hydrothermal preparation and photoluminescent properties of MgAl2O4: Eu3+ spinel nanocrystals. Journal of Luminescence, 2010 , 130, 434-441	3.8	49	
234	Preparation of Biocompatible, Luminescent-Plasmonic Core/Shell Nanomaterials Based on Lanthanide and Gold Nanoparticles Exhibiting SERS Effects. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 23788-23798	3.8	49	
233	The effects of down- and up-conversion on dual-mode green luminescence from Yb3+- and Tb3+-doped LaPO4 nanocrystals. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5410	7.1	48	
232	Luminescent Nanothermometer Operating at Very High Temperature-Sensing up to 1000 K with Upconverting Nanoparticles (Yb/Tm). ACS Applied Materials & Interfaces, 2020, 12, 43933-43941	9.5	48	
231	Luminescence lifetimes of aqueous europium perchlorate, chloride and nitrate solutions. <i>Materials Chemistry and Physics</i> , 1992 , 31, 159-161	4.4	47	
230	Luminescence studies of Eu(III) mixed ligand complexes. <i>Journal of Alloys and Compounds</i> , 2002 , 344, 70-74	5.7	46	
229	Preparation and photophysical properties of luminescent nanoparticles based on lanthanide doped fluorides (LaF3:Ce3+, Gd3+, Eu3+), obtained in the presence of different surfactants. <i>Journal of Alloys and Compounds</i> , 2014 , 597, 63-71	5.7	44	
228	Photoluminescent properties of LaF3:Eu3+ and GdF3:Eu3+ nanoparticles prepared by co-precipitation method. <i>Journal of Rare Earths</i> , 2009 , 27, 588-592	3.7	43	
227	Eu3+ and Tb3+ doped LaPO4 nanorods, modified with a luminescent organic compound, exhibiting tunable multicolour emission. <i>RSC Advances</i> , 2014 , 4, 46305-46312	3.7	42	
226	Facile synthesis, structural and spectroscopic properties of GdF3:Ce3+, Ln3+ (Ln3+=Sm3+, Eu3+, Tb3+, Dy3+) nanocrystals with bright multicolor luminescence. <i>Journal of Luminescence</i> , 2014 , 154, 479	-486	42	
225	Core/shell-type nanorods of Tb-doped LaPO, modified with amine groups, revealing reduced cytotoxicity. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 2068	2.3	42	
224	Luminescence investigations of novel orange-red fluorapatite KLaSr3(PO4)3F: Sm3+ phosphors with high thermal stability. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 2221-2231	3.8	41	
223	Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on luminescence intensity ratio (LIR) (Studies in visible and NIR range. <i>Journal of Luminescence</i> , 2019 , 214, 116571	3.8	41	
222	Effects of Dopant Addition on Lattice and Luminescence Intensity Parameters of Eu(III)-Doped Lanthanum Orthovanadate. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 28497-28508	3.8	41	
221	Synthesis and organic surface modification of luminescent, lanthanide-doped core/shell nanomaterials (LnF3@SiO2@NH2@organic acid) for potential bioapplications: spectroscopic, structural, and in vitro cytotoxicity evaluation. <i>Langmuir</i> , 2014 , 30, 9533-43	4	41	
220	Luminescence of europium(III) compounds in zirconia xerogels. <i>Chemical Physics Letters</i> , 2001 , 349, 266	5-27\$0	41	
219	Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu(3+)5%@SiO2@NH2. <i>Journal of Colloid and Interface Science</i> , 2016 , 481, 245-55	9.3	40	
218	Formation and dissociation kinetics of Eu(III) complexes with H5do3ap and similar dota-like ligands. <i>Polyhedron</i> , 2007 , 26, 4119-4130	2.7	38	

217	Lanthanide Upconverted Luminescence for Simultaneous Contactless Optical Thermometry and Manometry-Sensing under Extreme Conditions of Pressure and Temperature. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 40475-40485	9.5	38
216	Sr2LuF7:Yb3+Ho3+Er3+ Upconverting Nanoparticles as Luminescent Thermometers in the First, Second, and Third Biological Windows. <i>ACS Applied Nano Materials</i> , 2020 , 3, 6406-6415	5.6	37
215	Down- and up-converting dual-mode YPO4:Yb(3+),Tb(3+) nanocrystals: synthesis and spectroscopic properties. <i>Dalton Transactions</i> , 2014 , 43, 17255-64	4.3	37
214	Optical pressure nano-sensor based on lanthanide doped SrB2O4:Sm2+ luminescence [Novel high-pressure nanomanometer. <i>Sensors and Actuators B: Chemical</i> , 2018 , 273, 585-591	8.5	37
213	Structural, spectroscopic and cytotoxicity studies of TbF@CeF and TbF@CeF@SiO nanocrystals. Journal of Nanoparticle Research, 2013, 15, 1958	2.3	36
212	Chemiluminescence determination of tetracyclines using Fenton system in the presence europium(III) ions. <i>Analytica Chimica Acta</i> , 2009 , 639, 96-100	6.6	36
211	Energy transfer upconversion dynamics in YVO4:Yb3+,Er3+. <i>Journal of Luminescence</i> , 2016 , 170, 560-5	70 3.8	35
210	Synthesis, spectroscopic and structural studies on YOF, LaOF and GdOF nanocrystals doped with Eu3+, synthesized via stearic acid method. <i>Optical Materials</i> , 2013 , 35, 2226-2233	3.3	35
209	Structural, morphological and spectroscopic properties of Eu3+-doped rare earth fluorides synthesized by the hydrothermalmethod. <i>Journal of Solid State Chemistry</i> , 2013 , 200, 76-83	3.3	35
208	Synthesis of lanthanide doped CeF3:Gd3+, Sm3+ nanoparticles, exhibiting altered luminescence after hydrothermal post-treatment. <i>Journal of Alloys and Compounds</i> , 2016 , 661, 182-189	5.7	33
207	Up-conversion luminescence of Yb3+ and Er3+ doped YPO4, LaPO4 and GdPO4 nanocrystals. Journal of Luminescence, 2016 , 175, 21-27	3.8	33
206	Influence of nanocrystals size on the structural and luminescent properties of GdOF:Eu3+. <i>Journal of Alloys and Compounds</i> , 2012 , 539, 82-89	5.7	33
205	Spectroscopic characterization of Eu(III) complexes with new monophosphorus acid derivatives of H(4)dota. <i>Journal of Fluorescence</i> , 2005 , 15, 507-12	2.4	33
204	Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 399	2.3	32
203	Applications of spectroscopic methods in studies of polyoxometalates and their complexes with lanthanide(III) ions. <i>Journal of Alloys and Compounds</i> , 2000 , 300-301, 88-94	5.7	32
202	Luminescence lifetime of lanthanide(III) ions in aqueous solution containing azide ion. <i>Journal of Alloys and Compounds</i> , 2001 , 323-324, 125-127	5.7	32
201	Luminescence study of europium(III) complexes with several dicarboxylic acids in aqueous solution. Journal of Alloys and Compounds, 1995 , 225, 257-260	5.7	32
200	Luminescence properties of calcium tungstate activated by lanthanide(III) ions. <i>Journal of Rare Earths</i> , 2014 , 32, 221-225	3.7	31

199	Luminescent cellulose fibers activated by Eu3+-doped nanoparticles. <i>Cellulose</i> , 2012 , 19, 1271-1278	5.5	31	
198	Improvement of emission intensity in luminescent materials based on the antenna effect. <i>Journal of Alloys and Compounds</i> , 2000 , 300-301, 55-60	5.7	31	
197	Magnetic and luminescent hybrid nanomaterial based on Fe(3)O(4) nanocrystals and GdPO(4):Eu(3+) nanoneedles. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1188	2.3	29	
196	Modification of cellulose fibers with inorganic luminescent nanoparticles based on lanthanide(III) ions. <i>Carbohydrate Polymers</i> , 2019 , 206, 742-748	10.3	29	
195	Revised crystal structure and luminescent properties of gadolinium oxyfluoride GdDfldoped with Eull+ ions. <i>Dalton Transactions</i> , 2014 , 43, 6925-34	4.3	28	
194	Complexation Study of NpO+2 and UO2+2 Ions with Several Organic Ligands in Aqueous Solutions of High Ionic Strength. <i>Radiochimica Acta</i> , 1996 , 74, 117-122	1.9	27	
193	Europium-sensitized chemiluminescence of system tetracycline-H2O2-Fe(II)/(III) and its application to the determination of tetracycline. <i>Journal of Fluorescence</i> , 2008 , 18, 1193-7	2.4	27	
192	Tuning luminescence properties of Eu3+ doped CaAl2O4 nanophosphores with Na+ co-doping. Journal of Luminescence, 2013 , 133, 102-109	3.8	26	
191	Preparation and spectroscopy characterization of Eu:MgAl2O4 nanopowder prepared by modified Pechini method. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 5803-10	1.3	26	
190	Spectral studies of zinc octacarboxyphthalocyanine aggregation. <i>Dyes and Pigments</i> , 2009 , 80, 239-244	4.6	26	
189	Photoluminescence properties of nanosized strontium-yttrium borate phosphor Sr3Y2(BO3)4:Eu3+obtained by the sol-gel Pechini method. <i>Journal of Rare Earths</i> , 2011 , 29, 1161-1165	3.7	25	
188	LUMINESCENCE STUDY OF Eu(III) COMPLEXES EXTRACTED IN THE ORGANIC PHASE. <i>Solvent Extraction and Ion Exchange</i> , 1991 , 9, 637-647	2.5	25	
187	Synthesis, surface modification/decoration of luminescentthagnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe3O4/SiO2/NH2/PAA/LnF3). <i>Journal of Luminescence</i> , 2016 , 170, 484-490	3.8	24	
186	Spectroscopic properties of Eu3+ doped YBO3 nanophosphors synthesized by modified co-precipitation method. <i>Journal of Rare Earths</i> , 2011 , 29, 1142-1146	3.7	24	
185	Spectroscopic study of ion binding in synthetic polyelectrolytes using lanthanide ions. <i>Inorganica Chimica Acta</i> , 1995 , 239, 139-143	2.7	24	
184	Fluorescence of lanthanide(III) complexes in aqueous solutions the influence ofpH and solution composition. <i>Monatshefte Fil Chemie</i> , 1985 , 116, 901-911	1.4	24	
183	New complexes of cobalt(II) ions with pyridinecarboxylic acid N-oxides and 4,4?-byp. <i>Journal of Molecular Structure</i> , 2013 , 1034, 128-133	3.4	23	
182	Luminescent-plasmonic, lanthanide-doped core/shell nanomaterials modified with Au nanorods Up-conversion luminescence tuning and morphology transformation after NIR laser irradiation. Journal of Alloys and Compounds 2018, 762, 621-630	5.7	23	

181	Gold nanorods as a high-pressure sensor of phase transitions and refractive-index gauge. <i>Nanoscale</i> , 2019 , 11, 8718-8726	7.7	22
180	UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides. <i>Dalton Transactions</i> , 2020 , 49, 2129-2	143 7	22
179	Intensification of rare earths luminescence in glasses. <i>Journal of Luminescence</i> , 2003 , 102-103, 243-247	3.8	22
178	Lifetime and fluorescence quantum yield of uranium(VI) species in hydrolyzed solutions. <i>Journal of Alloys and Compounds</i> , 2000 , 300-301, 107-112	5.7	22
177	Nanosized complex fluorides based on Eu3+ doped Sr2LnF7 (Ln=La, Gd). <i>Journal of Rare Earths</i> , 2014 , 32, 242-247	3.7	21
176	Synthesis and spectroscopic properties of Yb3+ and Tb3+ co-doped GdBO3 materials showing down- and up-conversion luminescence. <i>Dalton Transactions</i> , 2015 , 44, 4063-9	4.3	21
175	Comparative studies on structural and luminescent properties of Eu3+:MgAl2O4 and Eu3+/Na+:MgAl2O4 nanopowders and nanoceramics. <i>Optical Materials</i> , 2012 , 35, 130-135	3.3	21
174	Chemiluminescence determination of fluoroquinolones using Fenton system in the presence of terbium(iii) ions. <i>Analyst, The</i> , 2011 , 136, 2592-7	5	21
173	A new spectrophotometric method for the determination and simultaneous determination of tungsten and molybdenum in polyoxometalates and their Ln(III) complexes. <i>Journal of Alloys and Compounds</i> , 2000 , 303-304, 132-136	5.7	21
172	Structural and spectroscopic properties of YOF:Eu3+ nanocrystals. <i>Journal of Alloys and Compounds</i> , 2013 , 576, 345-349	5.7	20
171	Investigation of Structure, Morphology, and Luminescence Properties in Blue-Red Emitter, Europium-Activated ZnAl2O4 Nanospinels. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 3418-34	4 2 8	20
170	EPR study of sandwiched gadolinium(III) complexes with polyoxometalates. <i>Journal of Alloys and Compounds</i> , 2002 , 341, 307-311	5.7	20
169	Spectroscopic studies of Eu(III) and Nd(III) complexes with several polyoxometalates. <i>Journal of Alloys and Compounds</i> , 2000 , 300-301, 370-376	5.7	20
168	Synthesis and Spectroscopic Studies of Chosen Heteropolytungstates and Their Ln(III) Complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1999 , 35, 225-231		20
167	Emission color tuning and phase transition determination based on high-pressure up-conversion luminescence in YVO4: Yb3+, Er3+ nanoparticles. <i>Journal of Luminescence</i> , 2019 , 209, 321-327	3.8	19
166	Energy migration in YBO3:Yb3+,Tb3+ materials: Down- and upconversion luminescence studies. Journal of Alloys and Compounds, 2016 , 686, 951-961	5.7	19
165	Determination of small amounts of water in dimethylformamide and dimethylsulfoxide using luminescence lifetime measurements of europium(III). <i>Analytical Chemistry</i> , 1991 , 63, 2542-2543	7.8	19
164	REVO4-Based Nanomaterials (RE = Y, La, Gd, and Lu) as Hosts for Yb3+/Ho3+, Yb3+/Er3+, and Yb3+/Tm3+ Ions: Structural and Up-Conversion Luminescence Studies. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 3300-3308	3.8	19

(2006-2018)

163	Luminescent-Magnetic Cellulose Fibers, Modified with Lanthanide-Doped Core/Shell Nanostructures. <i>ACS Omega</i> , 2018 , 3, 10383-10390	3.9	19
162	Preparation of multicolor luminescent cellulose fibers containing lanthanide doped inorganic nanomaterials. <i>Journal of Luminescence</i> , 2016 , 169, 520-527	3.8	18
161	Huge enhancement of Sm2+ emission via Eu2+ energy transfer in a SrB4O7 pressure sensor. Journal of Materials Chemistry C, 2020 , 8, 4810-4817	7.1	18
160	Chemiluminescent systems generating reactive oxygen species from the decomposition of hydrogen peroxide and their analytical applications. <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 44, 1-11	14.6	18
159	Bifunctional luminescent and magnetic core/shell type nanostructures Fe3O4@CeF3:Tb3+/SiO2. Journal of Rare Earths, 2011 , 29, 1117-1122	3.7	18
158	Synthesis, spectroscopic and structural properties of uranyl complexes based on bipyridine N-oxide ligands. <i>Polyhedron</i> , 2011 , 30, 880-885	2.7	18
157	Poly (Isonicotinic Acid N-Oxidelbonicotinate-N-Oxide-Chloro-Uranyl): The Interpenetrating Grids Created by Coordination and Hydrogen Bonds. <i>Journal of Chemical Crystallography</i> , 2010 , 40, 646-649	0.5	18
156	Antenna effect in an oxide xerogel. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 1998 , 54, 2183-2187	4.4	18
155	Luminescent cellulose fibers modified with cerium fluoride doped with terbium particles. <i>Polymer Composites</i> , 2016 , 37, 153-160	3	18
154	Electrochemiluminescence on Dy(III) and Tb(III)-doped Al/Al2O3 surface electrode. <i>Electrochemistry Communications</i> , 2006 , 8, 1071-1074	5.1	17
153	Quantitative resolution of spectroscopic systems using computer-assisted target factor analysis (CAT). <i>FreseniusoJournal of Analytical Chemistry</i> , 2001 , 369, 124-33		17
152	Spectroscopic study of lanthanide(III) complexes with chosen aminoacids and hydroxyacids in solution. <i>Journal of Alloys and Compounds</i> , 2000 , 300-301, 38-44	5.7	17
151	Luminescent-plasmonic effects in GdPO4:Eu3+ nanorods covered with silver nanoparticles. <i>Journal of Luminescence</i> , 2017 , 188, 24-30	3.8	16
150	Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates. Journal of Nanoparticle Research, 2015, 17, 1	2.3	16
149	Comparative studies of structure, spectroscopic properties and intensity parameters of tetragonal rare earth vanadate nanophosphors doped with Eu(III). <i>Journal of Alloys and Compounds</i> , 2018 , 741, 459)- <u>4</u> 72	16
148	The structure and spectroscopy of lanthanide(III) complexes with picolinic acid N-oxide in solution and in the solid state. <i>Materials Chemistry and Physics</i> , 2009 , 114, 134-138	4.4	16
147	Structural and spectroscopy studies of complexes of the uranyl ion with 2,2?-bipyridine-N,N?-dioxide. <i>Polyhedron</i> , 2010 , 29, 2081-2086	2.7	16
146	Luminescent materials consisting of Eu(III) ions complexed in heteropolyoxometalates incorporated into silica xerogels. <i>Journal of Non-Crystalline Solids</i> , 2006 , 352, 2213-2219	3.9	16

145	Application of cause-and-effect diagrams to the interpretation of UV-Vis spectroscopic data. <i>Analytical and Bioanalytical Chemistry</i> , 2002 , 372, 333-40	4.4	16
144	The Antenna Effect of Eu(III) Cryptate Entrapped in Xerogel Matrices. <i>Molecular Crystals and Liquid Crystals</i> , 2000 , 354, 207-219		16
143	Quenching of the triplet state of benzophenone by lanthanide 1,3-diketonate chelates in solutions. <i>Monatshefte Fil Chemie</i> , 1988 , 119, 669-676	1.4	16
142	EPR Study of Gadolinium(III) Complexes with Heteropolyanions: [Gd(SiW11O39)2]13-and [GdP5W30O110]12 <i>Acta Physica Polonica A</i> , 1996 , 90, 345-351	0.6	16
141	Synthesis and Spectroscopic Study of Europium(III) in Heteropolyanion [EuP5W30O110]12 <i>Acta Physica Polonica A</i> , 1996 , 90, 361-366	0.6	16
140	White and red emitting LaF3 nanocrystals doped with Eu2+ and Eu3+ ions: Spectroscopic and magnetic studies. <i>Journal of Alloys and Compounds</i> , 2016 , 686, 489-495	5.7	15
139	Synthesis and electropolymerization of 3,5-dithienylpyridines, their complexes and N-methylpyridinium cations. <i>Synthetic Metals</i> , 2008 , 158, 831-838	3.6	15
138	A luminescene study of Eu(III) and Tb(III) complexes with aminopolycarboxylic acid ligands. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1994 , 79, 25-31	4.7	15
137	Up-converting LuF3 and NaLuF4 fluorides doped with Yb3+/Er3+ or Yb3+/Tm3+ ions for latent fingermarks detection. <i>Journal of Alloys and Compounds</i> , 2019 , 784, 641-652	5.7	15
136	Luminescence properties of Tm3+/Yb3+, Er3+/Yb3+ and Ho3+/Yb3+ activated calcium tungstate. <i>Journal of Rare Earths</i> , 2011 , 29, 1166-1169	3.7	14
135	An application of the total measurement uncertainty budget concept to the thermodynamic data of uranyl (VI) complexation by sulfate. <i>Journal of Chemical Thermodynamics</i> , 2006 , 38, 1274-1284	2.9	14
134	Er3+, Yb3+ co-doped Sr3(PO4)2 phosphors: A ratiometric luminescence thermometer based on Stark levels with tunable sensitivity. <i>Journal of Luminescence</i> , 2020 , 227, 117517	3.8	14
133	Synthesis and tunable emission studies of new up-converting Ba2GdV3O11 nanopowders doped with Yb3+/Ln3+ (Ln3+ = Er3+, Ho3+, Tm3+). <i>Journal of Luminescence</i> , 2018 , 200, 59-65	3.8	13
132	Chemiluminescence determination of ibuprofen and ketoprofen using the Fenton system in the presence of europium(III) ions. <i>Analytical Methods</i> , 2012 , 4, 1964	3.2	13
131	Kinetic study of dissociation of Eu(III) complex with H8dotp (H8dotp=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylphosphonic acid)). <i>Inorganica Chimica Acta</i> , 2007 , 360, 3748-3755	2.7	13
130	Luminescence study of europium(III) tris(Eliketonato)/phosphonate complexes in chloroform. <i>Journal of Rare Earths</i> , 2008 , 26, 185-191	3.7	13
129	Synthesis and spectroscopic characterisation of chosen heteropolyanions and their Ln(III) complexes containing tetrabutylammonium counter ion. <i>Journal of Alloys and Compounds</i> , 2004 , 374, 366-370	5.7	13
128	Green-emitting nanoscaled borate phosphors Sr3RE2(BO3)4:Tb3+. <i>Materials Chemistry and Physics</i> , 2013 , 140, 447-452	4.4	12

(2008-2010)

127	Spectroscopic studies of lanthanide(III) ion complexes with diethyl(phthalimidomethyl) phosphonate. <i>Journal of Luminescence</i> , 2010 , 130, 832-838	3.8	12	
126	Lanthanide complexes with diethyl(2-oxopropyl) phosphonate and diethyl(2-oxo-2-phenylethyl) phosphonate ligands. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 395-399	5.7	12	
125	Luminescence properties of materials consisting of Eu(III) or Tb(III) complexes with 2,2?-bipyridine N,N?-dioxide and coligands entrapped in xerogels. <i>Optical Materials</i> , 2008 , 30, 1225-1232	3.3	12	
124	Simultaneous determination of molybdenum(VI) and tungsten(VI) and its application in elemental analysis of polyoxometalates. <i>Talanta</i> , 2006 , 69, 800-6	6.2	12	
123	Luminescence characterisation of the reaction system histidine-KBrO3-Tb(III)-H2SO4. <i>Journal of Fluorescence</i> , 2006 , 16, 825-30	2.4	12	
122	Spectroscopic studies of Ln(III) complexes with polyoxometalates in solids, and aqueous and non-aqueous solutions. <i>International Journal of Photoenergy</i> , 2003 , 5, 233-238	2.1	12	
121	Chemometric and statistical analysis of polyoxometalate interaction with lanthanide(III) ions. <i>Talanta</i> , 2001 , 55, 371-86	6.2	12	
120	Nanocrystalline rare earth fluorides doped with Pr3+ ions. <i>Journal of Rare Earths</i> , 2016 , 34, 802-807	3.7	12	
119	Dual-center thermochromic Bi2MoO6:Yb3+, Er3+, Tm3+ phosphors for ultrasensitive luminescence thermometry. <i>Journal of Alloys and Compounds</i> , 2022 , 890, 161830	5.7	12	
118	Synthesis, structural and spectroscopic studies on GdBO3:Yb3+/Tb3+@SiO2 core-shell nanostructures. <i>Journal of Rare Earths</i> , 2015 , 33, 1148-1154	3.7	11	
117	Spectral analysis in ultraweak emissions of chemi- and electrochemiluminescence systems. <i>Journal of Rare Earths</i> , 2009 , 27, 593-597	3.7	11	
116	Preparation and characterization of uranyl complexes with phosphonate ligands. <i>Journal of Thermal Analysis and Calorimetry</i> , 2010 , 100, 253-260	4.1	11	
115	Spectroscopic studies of Eu(III) KegginN and DawsonN polyoxotungstates substituted by acetato and oxalato ligands. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 384-387	5.7	11	
114	Spectroscopic properties of neodymium(III)-containing polyoxometalates in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005 , 62, 478-82	4.4	11	
113	Spectroscopic speciation and structural characterisation of uranyl(VI) interaction with pyridine carboxylic acid N-oxide derivatives. <i>Inorganica Chimica Acta</i> , 2010 , 363, 3847-3855	2.7	10	
112	Electron Paramagnetic Resonance study of chosen gadolinium(III) sandwiched- and encapsulated-polyoxometalate complexes. <i>Journal of Alloys and Compounds</i> , 1998 , 275-277, 349-352	5.7	10	
111	Complexation of f electron (3+) ions with pseudohalide ligands. <i>Journal of Alloys and Compounds</i> , 1998 , 275-277, 754-758	5.7	10	
110	Electrochemiluminescence Study of Europium (III) Complex with Coumarin3-Carboxylic Acid. <i>International Journal of Photoenergy</i> , 2008 , 2008, 1-6	2.1	10	

109	Quantitative evaluation of Ln(III) pyridine N-oxide carboxylic acid spectra under chemometric and metrological aspects. <i>Journal of Alloys and Compounds</i> , 2006 , 408-412, 962-969	5.7	10
108	Quantum efficiency of the luminescence of Eu(III), Tb(III) and Dy(III) in aqueous solutions. <i>Monatshefte Fil Chemie</i> , 1989 , 120, 699-703	1.4	10
107	Influence of N3-Ions on Chemiluminescence of the Eu(II)/Eu(III)-H2O2System. <i>Acta Physica Polonica A</i> , 1996 , 90, 101-108	0.6	10
106	Improving temperature resolution of luminescent nanothermometers working in the near-infrared range using non-thermally coupled levels of Yb3+ & Tm3+. <i>Journal of Luminescence</i> , 2020 , 228, 117643	3.8	10
105	Nonlinear Optical Thermometry Novel Temperature Sensing Strategy via Second Harmonic Generation (SHG) and Upconversion Luminescence in BaTiO3:Ho3+,Yb3+ Perovskite. <i>Advanced Optical Materials</i> , 2021 , 9, 2100386	8.1	10
104	Synthesis of luminescent KY3F10 nanopowder multi-doped with lanthanide ions by a co-precipitation method. <i>Journal of Rare Earths</i> , 2016 , 34, 808-813	3.7	10
103	Luminescent-plasmonic coreShell microspheres, doped with Nd3+ and modified with gold nanoparticles, exhibiting whispering gallery modes and SERS activity. <i>Journal of Rare Earths</i> , 2019 , 37, 1152-1156	3.7	9
102	Determination of deuterium oxide content in water based on luminescence quenching. <i>Talanta</i> , 2018 , 184, 364-368	6.2	9
101	Structural, morphology and luminescence properties of mixed calcium molybdate-tungstate microcrystals doped with Eu3+ ions and changes of the color emission chromaticity. <i>Optical Materials</i> , 2018 , 84, 422-426	3.3	9
100	An impact of sintering temperature and doping level on structural and spectral properties of Eu-doped strontium aluminium oxide. <i>Journal of Rare Earths</i> , 2011 , 29, 1105-1110	3.7	9
99	Luminescent materials consisting of Eu(III) ions complexed with cryptand ligand and coligands entrapped in xerogel matrices. <i>Journal of Luminescence</i> , 2005 , 115, 122-130	3.8	9
98	Tm2+ Activated SrB4O7 Bifunctional Sensor of Temperature and PressureHighly Sensitive, Multi-Parameter Luminescence Thermometry and Manometry. <i>Advanced Optical Materials</i> ,2101507	8.1	9
97	Synthesis, spectroscopic characterization and antifungal activity studies of five novel complexes with pyridine carboxamides. <i>Polyhedron</i> , 2017 , 133, 187-194	2.7	8
96	Bifunctional magnetic-upconverting luminescent cellulose fibers for anticounterfeiting purposes. <i>Journal of Alloys and Compounds</i> , 2020 , 829, 154456	5.7	8
95	Effect of various surfactants on changes in the emission color chromaticity in upconversion YVO4: Yb3+, Er3+ nanoparticles. <i>Optical Materials</i> , 2018 , 76, 400-406	3.3	8
94	Influence of boric acid/Sr2+ ratio on the structure and luminescence properties (colour tuning) of nano-sized, complex strontium borates doped with Sm2+ and Sm3+ ions. <i>Optical Materials</i> , 2018 , 83, 245-251	3.3	8
93	Pyridine N-oxide complexes of Cu(II) ions with pseudohalides: Synthesis, structural and spectroscopic characterization. <i>Polyhedron</i> , 2014 , 81, 728-734	2.7	8
92	Photophysical characterization of La1\(\mathbb{R}\)EuxBO3 and La1\(\mathbb{R}\)TbxBO3 nanopowders synthesized by sol\(\mathbb{G}\)el Pechini method. Optical Materials, 2013, 35, 1297-1303	3.3	8

91	Luminescence study of praseodymium complexes with selected phosphonate ligands. <i>Optical Materials</i> , 2011 , 33, 1544-1547	3.3	8	
90	Threshold bootstrap target factor analysis study of neodymium with pyridine 2,4 dicarboxylic acid N-oxide-an investigation of traceability. <i>Talanta</i> , 2004 , 63, 287-96	6.2	8	
89	Luminescence study of lanthanide(III) ions in non-aqueous solutions containing azide ions. <i>Journal of Alloys and Compounds</i> , 2004 , 380, 173-176	5.7	8	
88	Application of cause-and-effect analysis to potentiometric titration. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 382, 1652-61	4.4	8	
87	EPR study of selected gadolinium complexes: Ediketonates and polycarboxylates. <i>Radiation Physics and Chemistry</i> , 1995 , 45, 935-938	2.5	8	
86	Influence of the change of the oxidation state of the rare earths upon their mass fragmentation in acetylacetonate complexes. <i>Inorganica Chimica Acta</i> , 1989 , 155, 259-261	2.7	8	
85	On the role of the ground state Tb(III)/acetylacetone complex in sensitized emission of Tb(III) in ethanol solution. <i>Monatshefte Fil Chemie</i> , 1989 , 120, 821-826	1.4	8	
84	Influence ofpH and concentration of complexing agents on fluorescence of europium (III) ethylenediaminetetraacetic acid and europium (III) nitrilotriacetic acid complexes in aqueous solutions. <i>Monatshefte Fil Chemie</i> , 1982 , 113, 907-913	1.4	8	
83	Upconversion luminescence in cellulose composites (fibres and paper) modified with lanthanide-doped SrF2 nanoparticles. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11922-11928	7.1	8	
82	Up-conversion green emission of Yb 3+ /Er 3+ ions doped YVO 4 nanocrystals obtained via modified Pechinils method. <i>Optical Materials</i> , 2017 , 74, 128-134	3.3	7	
81	Effect of ionic substitution (Ca/Sr/Ba) on structure and luminescent properties of Ce3+ doped fluorapatite. <i>Journal of Luminescence</i> , 2018 , 196, 285-289	3.8	7	
80	Effects of bis(salicylidene)trimethylenediamine and 2,2?-bipyridyl on luminescence and extraction of tris(pivaloyltrifluoroacetonato)Eu(III). <i>Inorganica Chimica Acta</i> , 2009 , 362, 3641-3647	2.7	7	
79	Dissociation kinetics study of Ce(III) complexes with H8dotp (H8dotp=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis (methylphosphonic acid)). <i>Journal of Alloys and Compounds</i> , 2008 , 451, 42-45	5.7	7	
78	Gadolinium(III) cryptates investigated by multifrequency EPR. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 182-185	5.7	7	
77	Spectroscopic studies of lanthanides complexes with diethyl benzylphosphonate and diethylphosphonoacetic acid. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 388-394	5.7	7	
76	Spectroscopic studies of the lanthanide(III) ions with pyridine carboxylic acid N-oxide ligands and in mixed ligand complexes. <i>Molecular Physics</i> , 2003 , 101, 977-981	1.7	7	
75	Spectrofluorimetric determination of trace amounts of Tb(III) using acetylacetone in ethanol solution. <i>Fresenius Zeitschrift F\(\textit{A}\) Analytische Chemie</i> , 1988 , 330, 698-699		7	
74	Influence of pH and concentration of complexing agents on fluorescence of samarium(III), gadolinium(III), and terbium(III)Ethylenediaminetetraacetic acid or nitrilotriacetic acid complexes in aqueous solutions. <i>Monatshefte FB Chemie</i> , 1983 , 114, 185-193	1.4	7	

73	Influence of matrix on the luminescence properties of Eu2+/Eu3+ doped strontium borates: SrB4O7, SrB2O4 and Sr3(BO3)2, exhibiting multicolor tunable emission. <i>Journal of Alloys and Compounds</i> , 2020 , 822, 153511	5.7	7
72	Spectroscopic properties of Y1NEuxBO3 and Y1NTbxBO3 nanopowders obtained by the solgel Pechini method. <i>Journal of Luminescence</i> , 2014 , 155, 374-383	3.8	6
71	The Interaction of Arsenazo III with Nd(III) A Chemometric and Metrological Analysis. <i>Journal of Solution Chemistry</i> , 2008 , 37, 933-946	1.8	6
70	Spectroscopic characterization of chosen Ln(III) polyoxometalate complexes with organic counter cations in solid and in non-aqueous solutions. <i>Journal of Alloys and Compounds</i> , 2006 , 408-412, 958-961	5.7	6
69	Spectral properties of Eu(III) complexes with heteropolyanions immobilised in xerogel matrices. Journal of Alloys and Compounds, 2004 , 380, 205-210	5.7	6
68	Mass spectrometric behaviour of M(acac)3 complexes (M=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; acac=acetylacetonate ligand) in triethanolamine upon negative liquid secondary ion mass spectrometry. <i>Inorganica Chimica Acta</i> , 1991 , 184, 229-233	2.7	6
67	Eu2+ emission from thermally coupled levels Thew frontiers for ultrasensitive luminescence thermometry. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 1220-1227	7.1	6
66	Spectroscopic Studies of Polyoxometalates and their Complexes with Lanthanide(III) Ions in Solution. <i>Acta Physica Polonica A</i> , 1996 , 90, 275-283	0.6	6
65	Multiple ratiometric nanothermometry operating with Stark thermally and non-thermally-coupled levels in upconverting Y2\(\text{MoO6}:xEr3+ nanoparticles. } <i>Journal of Alloys and Compounds</i> , 2021 , 864, 1588	19 ⁵ 1 ⁷	6
64	Improving performance of luminescent nanothermometers based on non-thermally and thermally coupled levels of lanthanides by modulating laser power. <i>Nanoscale</i> , 2021 , 13, 14139-14146	7.7	6
63	Four new amide derivatives of pyridinecarboxylic acids. Synthesis, structure and spectroscopic characterization. <i>Journal of Molecular Structure</i> , 2017 , 1145, 86-93	3.4	5
62	High-pressure luminescence of monoclinic and triclinic GdBO3: Eu3+. <i>Ceramics International</i> , 2020 , 46, 26368-26376	5.1	5
61	The structure and spectroscopic characterization of complexes with tetraethyl methylenediphosphonate in solution and in solid state. <i>Journal of Molecular Structure</i> , 2012 , 1011, 145-	148	5
60	Ultraweak emission of the Eu(III) ions in cathodic generated electrochemiluminescence. <i>Optical Materials</i> , 2011 , 33, 1540-1543	3.3	5
59	Electrogenerated luminescence of chosen lanthanide complexes at stationary oxide-covered aluminium electrode. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 81-83	5.7	5
58	Statistical analysis of the impact of spectral correlation on observed formation constants from UV-visible spectroscopic measurements. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 378, 221-6	4.4	5
57	Emission spectroscopic properties of water soluble porphyrins in hydrogen peroxide chemiluminescence system with d - and f -electron metals. <i>Journal of Solid State Chemistry</i> , 2003 , 171, 208-211	3.3	5
56	Energy transfer in the chemiluminescent system: Eu(II)/(III)NBH2O2. <i>Journal of Alloys and Compounds</i> , 2001 , 323-324, 670-672	5.7	5

55	Importance of the ligand excess in investigations of the fluorescence intensity of the lanthanide(III) complexes of aminopolyacetic acids in aqueous solutions. <i>Inorganica Chimica Acta</i> , 1987 , 139, 299-300	2.7	5	
54	Spectrofluorimetric determination of Dy(III) with acetylacetone. <i>Fresenius Zeitschrift F\(\textit{A}\) Analytische Chemie</i> , 1988 , 332, 63-64		5	
53	Lanthanide Luminescence Enhancement of Core-Shell Magnetite-SiO Nanoparticles Covered with Chain-Structured Helical Eu/Tb Complexes. <i>ACS Omega</i> , 2020 , 5, 32930-32938	3.9	5	
52	Effect of the Ce3+ ions co-doping on the emission color of the up-converting NaYbF4 doped with Ho3+ ions. <i>Ceramics International</i> , 2020 , 46, 26382-26387	5.1	4	
51	A new synthesis approach for upconverting nanoparticles based on rare earth ternary vanadates. <i>Ceramics International</i> , 2020 , 46, 26309-26316	5.1	4	
50	Structure modeling of terbium doped strontium-lanthanum borate. <i>Journal of Rare Earths</i> , 2014 , 32, 248-253	3.7	4	
49	Semiempirical and DFT computations of the influence of Tb(III) dopant on unit cell dimensions of cerium(III) fluoride. <i>Journal of Computational Chemistry</i> , 2015 , 36, 193-9	3.5	4	
48	Direct spectroscopic speciation of the complexation of U(VI) in acetate solution. <i>Monatshefte F</i> [®] <i>Chemie</i> , 2014 , 145, 1689-1696	1.4	4	
47	Spectroscopic studies of the complexes formed between lanthanide ions and N-(2-hydroxyethyl)iminodiacetic acid in solution. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1998 , 119, 109-114	4.7	4	
46	EPR study of selected gadolinium Eliketonates. <i>Journal of Applied Spectroscopy</i> , 1995 , 62, 938-941	0.7	4	
45	Luminescence study of complexation of Eu(III) and Tb(III) with N-methyliminodiacetic acid. <i>Journal of Alloys and Compounds</i> , 1995 , 225, 515-519	5.7	4	
44	Fluorescence of lanthanide(III) complexes with aminopolyacetic acids in aqueous solutions. <i>Monatshefte Fil Chemie</i> , 1987 , 118, 907-921	1.4	4	
43	Novel apatite KLaSr3(PO4)3F:Eu2+ phosphors: synthesis, structure, and luminescence properties. Journal of Materials Research, 2016 , 31, 3489-3497	2.5	4	
42	Highly-efficient double perovskite Mn4+-activated Gd2ZnTiO6 phosphors: A bifunctional optical sensing platform for luminescence thermometry and manometry. <i>Chemical Engineering Journal</i> , 2022 , 446, 136839	14.7	4	
41	A series of new pyridine carboxamide complexes and self-assemblies with Tb(III), Eu(III), Zn(II), Cu(II) ions and their luminescent and magnetic properties. <i>Journal of Coordination Chemistry</i> , 2019 , 72, 727-74	4 § .6	3	
40	Up-converting nanophosphors based on Yb3+/Ho3+ doped NaM(WO4)2 (M = Gd, Y) synthesized in situ under hydrothermal conditions. <i>Optical Materials</i> , 2020 , 107, 109979	3.3	3	
39	Surface Modification of Luminescent Ln Fluoride Core-Shell Nanoparticles with Acetylsalicylic acid (Aspirin): Synthesis, Spectroscopic and in Vitro Hemocompatibility Studies. <i>ChemMedChem</i> , 2020 , 15, 1490-1496	3.7	3	
38	OrganicIhorganic Hybrid Material [Na+(ClO4)[C6H5NO3)(H2O)]: Very Short Intramolecular Hydrogen Bond And Hierarchy of Intermolecular Interactions. <i>Journal of Chemical Crystallography</i> , 2012 42 588-592	0.5	3	

37	Complexation studies of 3-substituted Ediketones with selected d- and f-metal ions. <i>Chemical Papers</i> , 2011 , 65,	1.9	3
36	Luminescent studies of Ln(III) complexes with 4-amino-6-methylpicolinic acid N-oxide at 77 K. Journal of Luminescence, 2007 , 122-123, 221-226	3.8	3
35	Influence of xerogel matrices and co-ligands on luminescence parameters in materials with an europium(III) cryptate. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 2047-2056	3.9	3
34	A comparative study on chemiluminescence propperties of some inorganic systems. <i>International Journal of Photoenergy</i> , 2003 , 5, 239-242	2.1	3
33	Importance of a role of (EuN3)2+complex generated in the Eu3+/N3-/H2O2 system studied by the chemilumine scent method. <i>International Journal of Photoenergy</i> , 2001 , 3, 201-203	2.1	3
32	Estimation of Fibre Orientation in Paper Products by an Image Analysis On-line System. <i>Fibres and Textiles in Eastern Europe</i> , 2016 , 24, 107-112	0.9	3
31	3,5-Dihydroxy Benzoic Acid-Capped CaF:Tb Nanocrystals as Luminescent Probes for the WO Ion in Aqueous Solution. <i>ACS Omega</i> , 2020 , 5, 4568-4575	3.9	2
30	Ab initio study of pressure-induced phase transition, band gaps and X-ray photoemission valence band spectra of YVO4. <i>Computational Materials Science</i> , 2016 , 117, 98-102	3.2	2
29	Synthesis, complexation studies and structural characterization of d and f metal ion complexes with 4-chloroquinaldinic acid N-oxide. <i>Journal of Molecular Structure</i> , 2012 , 1010, 59-66	3.4	2
28	Chemiluminescence characterisation of the reaction system Tb(III) Emino acid peroxynitrous acid. Journal of Alloys and Compounds, 2008, 451, 186-189	5.7	2
27	Photoluminescence and electrochemiluminescence studies of chosen rare earths systems. <i>Journal of Rare Earths</i> , 2008 , 26, 192-197	3.7	2
26	Influence of Lanthanide(III) Ions on the Reaction System TryptophanH2O2He(II). <i>International Journal of Photoenergy</i> , 2007 , 2007, 1-7	2.1	2
25	Spectroscopy, chemometrics and metrologythree aspects of lanthanide chemistry. <i>Journal of Alloys and Compounds</i> , 2004 , 380, 413-417	5.7	2
24	Spectroscopic study of DHDA complex formation of d- and f-electron metal ions in methanol solution. <i>Journal of Fluorescence</i> , 2005 , 15, 493-7	2.4	2
23	Positive/negative liquid secondary ion mass spectrometry ofLn-EDTA (1:1) complexes. Formation of molecular ion adducts with neutral species of the matrix orLn-EDTA. <i>Monatshefte Fil Chemie</i> , 1992 , 123, 225-230	1.4	2
22	Spectroscopic Characterization of Ethylenediamine-di(o-hydroxyphenyl)acetic Acid and its Complexes with Lanthanide(III) Ions. <i>Acta Physica Polonica A</i> , 1996 , 90, 353-359	0.6	2
21	Optically active plasmonic cellulose fibers based on Au nanorods for SERS applications <i>Carbohydrate Polymers</i> , 2022 , 279, 119010	10.3	2
20	Adenosine capped CaF2:Eu3+ nanocrystals and their applications in permanganate detection. Optical Materials, 2020, 107, 110048	3.3	2

(2010-2022)

Pressure-triggered enormous redshift and enhanced emission in Ca2Gd8Si6O26:Ce3+ phosphors: Ultrasensitive, thermally-stable and ultrafast response pressure monitoring. <i>Chemical Engineering Journal</i> , 2022 , 443, 136414	14.7	2
Synthesis of highly luminescent nanocomposite LaF3:Ln3+/Q-dots-CdTe system, exhibiting tunable red-to-green emission. <i>Chemical Papers</i> , 2019 , 73, 2907-2911	1.9	1
Hydrolysis contributions in U(VI) spectroscopic speciation in acetate media. <i>Inorganica Chimica Acta</i> , 2015 , 426, 113-118	2.7	1
The structural and spectroscopic studies of UO22+ complexes with diethyl benzylphosphonate and diethyl (carboxymethyl)phosphonate in solution and in the solid state. <i>Polyhedron</i> , 2013 , 62, 243-249	2.7	1
Electrochemical capacitor materials based on carbon and luminophors doped with lanthanide ions. Journal Physics D: Applied Physics, 2017 , 50, 415502	3	1
Chemometrics in f-element speciation: a metrological challenge?. <i>Accreditation and Quality Assurance</i> , 2011 , 16, 199-205	0.7	1
Photophysical characterization of chosen Ln(III) macromolecular complexes. <i>International Journal of Photoenergy</i> , 2005 , 7, 147-151	2.1	1
Energy transfer process in the reaction systemNH2OH-OH-NaOH-CU(II)Eu(III)/thenoyltrifluoroacetone. <i>International Journal of Photoenergy</i> , 2005 , 7, 143-146	2.1	1
Pairs of Ln(III) dopant ions in crystalline solid luminophores: an ab initio computational study. Journal of Rare Earths, 2016 , 34, 820-827	3.7	1
Five subsequent new pyridine carboxamides and their complexes with d-electron ions. Synthesis, spectroscopic characterization and magnetic properties. <i>Journal of Molecular Structure</i> , 2019 , 1178, 66	9-681	1
Y2(Ge,Si)O5:Pr phosphors: multimodal temperature and pressure sensors shaped by bandgap management. <i>Journal of Materials Chemistry C</i> ,	7.1	1
Ligand-Sensitised LaF:Eu and SrF:Eu Nanoparticles and in Vitro Haemocompatiblity Studies. <i>ChemMedChem</i> , 2021 , 16, 1640-1650	3.7	1
Bi3+ as an enhancer for down- and upconversion luminescence in ternary vanadate structures. <i>Ceramics International</i> , 2021 , 47, 24182-24190	5.1	1
Boltzmann vs. non-Boltzmann (non-linear) thermometry - Yb3+-Er3+ activated dual-mode thermometer and phase transition sensor via second harmonic generation. <i>Journal of Alloys and Compounds</i> , 2022 , 906, 164329	5.7	1
Pressure-driven configurational crossover between 4f7 and 4f65d1 States Ciant enhancement of narrow Eu2+ UV-Emission lines in SrB4O7 for luminescence manometry. <i>Acta Materialia</i> , 2022 , 231, 117	788 8	1
Ratiometric Upconversion Temperature Sensor Based on Cellulose Fibers Modified with Yttrium Fluoride Nanoparticles. <i>Nanomaterials</i> , 2022 , 12, 1926	5.4	1
GdBO3 and YBO3 crystals under compression. <i>Journal of Alloys and Compounds</i> , 2021 , 866, 158962	5.7	O
Kinetic and spectral studies of EHPG systems using chemi- and electrochemiluminescence methods. Journal of Rare Earths, 2010 , 28, 868-873	3.7	
	Ultrasensitive, thermally-stable and ultrafast response pressure monitoring. Chemical Engineering Journal, 2022, 443, 136414 Synthesis of highly luminescent nanocomposite Laf3:Ln3+/Q-dots-CdTe system, exhibiting tunable red-to-green emission. Chemical Papers, 2019, 73, 2907-2911 Hydrolysis contributions in U(VI) spectroscopic speciation in acetate media. Inorganica Chimica Acta, 2015, 426, 113-118 The structural and spectroscopic studies of UO22+ complexes with diethyl benzylphosphonate and diethyl (carboxymethyl)phosphonate in solution and in the solid state. Polyhedron, 2013, 62, 243-249 Electrochemical capacitor materials based on carbon and luminophors doped with lanthanide ions. Journal Physics D: Applied Physics, 2017, 50, 415502 Chemometrics in Felement speciation: a metrological challenge?. Accreditation and Quality Assurance, 2011, 16, 199-205 Photophysical characterization of chosen Ln(III) macromolecular complexes. International Journal of Photoenergy, 2005, 7, 147-151 Energy transfer process in the reaction systemNH2OH-OH-NaOH-CU(II)Bu(IIII)/thenoyltrifluoroacetone. International Journal of Photoenergy, 2005, 7, 143-146 Pairs of Ln(III) dopant ions in crystalline solid luminophores: an ab initio computational study. Journal of Rare Earths, 2016, 34, 820-827 Five subsequent new pyridine carboxamides and their complexes with d-electron ions. Synthesis, spectroscopic characterization and magnetic properties. Journal of Molecular Structure, 2019, 1178, 66 Y2(Ge,Si)O5:Pr phosphors: multimodal temperature and pressure sensors shaped by bandgap management. Journal of Materials Chemistry C, Ligand-Sensitised LaF-Eu and SiF-Eu Nanoparticles and in Vitro Haemocompatibility Studies. Chemided Chem. 2021, 16, 1640-1650 Bi3+ as an enhancer for down- and upconversion luminescence in ternary vanadate structures. Ceramics International, 2021, 47, 24182-24190 Billah as an enhancer for down- and upconversion luminescence manometry. Acta Materialia, 2022, 231, 117. Ratiometric Upconversion Temperature Sen	Ultrasensitive, thermally-stable and ultrafast response pressure monitoring. Chemical Engineering Journal, 2022, 443, 136414 Synthesis of highly luminescent nanocomposite LaF3Ln3+/Q-dots-CdTe system, exhibiting tunable red-to-green emission. Chemical Papers, 2019, 73, 2907-2911 Hydrolysis contributions in U(VI) spectroscopic speciation in acetate media. Inorganica Chimica Acta, 2015, 426, 113-118 The structural and spectroscopic studies of UO22+ complexes with diethyl benzylphosphonate and diethyl (carboxymethyl)phosphonate in solution and in the solid state. Polyhedion, 2013, 62, 243-249 Electrochemical capacitor materials based on carbon and luminophors doped with lanthanide ions. Journal Physics D: Applied Physics, 2017, 50, 415502 Chemometrics in Felement speciation: a metrological challenge?. Accreditation and Quality Assurance, 2011. 16, 199-205 Photophysical characterization of chosen Ln(III) macromolecular complexes. International Journal of Photoenergy, 2011. 16, 199-205 Photophysical characterization of chosen Ln(III) macromolecular complexes. International Journal of Photoenergy, 2005, 7, 147-151 Energy transfer process in the reaction systemNH2OH-OH-NaOH-CU(II)Eu(III)/ thenoyltrifluoroacetone. International Journal of Photoenergy, 2005, 7, 143-146 2.1 Pairs of Ln(III) dopant ions in crystalline solid luminophores: an ab initio computational study. Journal of Rare Earths, 2016, 34, 820-827 Five subsequent new pyridine carboxamides and their complexes with d-electron ions. Synthesis, spectroscopic characterization and magnetic properties. Journal of Molecular Structure, 2019, 1178, 669-881 Y2(Ge, Si)OS-Pr phosphors: multimodal temperature and pressure sensors shaped by bandgap management. Journal of Materials Chemistry C, Ligand-Sensitised LaF: Eu and SrF. Eu Nanoparticles and in Vitro Haemocompatibility Studies. ChemMedChem, 2021, 16, 1640-1650 Bi3+ as an enhancer for down- and upconversion luminescence in ternary vanadate structures. Chemmedic International, 2021, 47, 24182-24190 Bolt

Synthesis and luminescence tunability studies in new upconverting Ba2V2O7: Yb, Ho phosphors. *Polyhedron*, **2022**, 115940

2.7