
Stefan Lis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4305783/publications.pdf Version: 2024-02-01

STEEAN LIC

#	Article	IF	CITATIONS
1	Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates—LaPO ₄ /YPO ₄ :Yb ³⁺ –Tm ³⁺ . ACS Applied Materials & Interfaces, 2018, 10, 17269-17279.	8.0	236
2	Upconverting Lanthanide Fluoride Core@Shell Nanorods for Luminescent Thermometry in the First and Second Biological Windows: β-NaYF ₄ :Yb ³⁺ – Er ³⁺ @SiO ₂ Temperature Sensor. ACS Applied Materials & Interfaces, 2019, 11, 13389-13396.	8.0	178
3	Energy transfer in solution of lanthanide complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 150, 233-247.	3.9	176
4	Luminescence Properties of Materials with Eu(III) Complexes:Â Role of Ligand, Coligand, Anion, and Matrix. Chemistry of Materials, 2003, 15, 656-663.	6.7	175
5	Luminescence spectroscopy of lanthanide(III) ions in solution. Journal of Alloys and Compounds, 2002, 341, 45-50.	5.5	141
6	Structural and Spectroscopic Properties of LaOF:Eu ³⁺ Nanocrystals Prepared by the Sol–Gel Pechini Method. Inorganic Chemistry, 2011, 50, 8112-8120.	4.0	134
7	Luminescent Nanothermometer Operating at Very High Temperature—Sensing up to 1000 K with Upconverting Nanoparticles (Yb ³⁺ /Tm ³⁺). ACS Applied Materials & Interfaces, 2020, 12, 43933-43941.	8.0	130
8	Lifetime nanomanometry – high-pressure luminescence of up-converting lanthanide nanocrystals – SrF ₂ :Yb ³⁺ ,Er ³⁺ . Nanoscale, 2017, 9, 16030-16037.	5.6	114
9	Optical Vacuum Sensor Based on Lanthanide Upconversion—Luminescence Thermometry as a Tool for Ultralow Pressure Sensing. Advanced Materials Technologies, 2020, 5, 1901091.	5.8	102
10	Upconverting lanthanide doped fluoride NaLuF4:Yb3+-Er3+-Ho3+ - optical sensor for multi-range fluorescence intensity ratio (FIR) thermometry in visible and NIR regions. Journal of Luminescence, 2018, 201, 104-109.	3.1	91
11	Optical Pressure Sensor Based on the Emission and Excitation Band Width (fwhm) and Luminescence Shift of Ce ³⁺ -Doped Fluorapatite—High-Pressure Sensing. ACS Applied Materials & Interfaces, 2019, 11, 4131-4138.	8.0	88
12	Sr ₂ LuF ₇ :Yb ³⁺ –Ho ³⁺ –Er ³⁺ Upconverting Nanoparticles as Luminescent Thermometers in the First, Second, and Third Biological Windows. ACS Applied Nano Materials, 2020, 3, 6406-6415.	5.0	80
13	Multifunctionality of GdPO4:Yb3+,Tb3+ nanocrystals – luminescence and magnetic behaviour. Journal of Materials Chemistry, 2012, 22, 22989.	6.7	77
14	Lanthanide Upconverted Luminescence for Simultaneous Contactless Optical Thermometry and Manometry–Sensing under Extreme Conditions of Pressure and Temperature. ACS Applied Materials & Interfaces, 2020, 12, 40475-40485.	8.0	77
15	Influence of Matrix on the Luminescent and Structural Properties of Glycerine-Capped, Tb ³⁺ -Doped Fluoride Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 17188-17196.	3.1	75
16	Tunable Luminescence of Sr ₂ CeO ₄ :M ²⁺ (M = Ca, Mg, Ba, Zn) and Sr ₂ CeO ₄ :Ln ³⁺ (Ln = Eu, Dy, Tm) Nanophosphors. Journal of Physical Chemistry C, 2012, 116, 3219-3226.	3.1	74
17	Structural, Spectroscopic, and Magnetic Properties of Eu ³⁺ -Doped GdVO ₄ Nanocrystals Synthesized by a Hydrothermal Method. Inorganic Chemistry, 2014, 53, 12243-12252.	4.0	71
18	Highly-efficient double perovskite Mn4+-activated Gd2ZnTiO6 phosphors: A bifunctional optical sensing platform for luminescence thermometry and manometry. Chemical Engineering Journal, 2022, 446, 136839.	12.7	68

#	Article	IF	CITATIONS
19	Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on luminescence intensity ratio (LIR) – Studies in visible and NIR range. Journal of Luminescence, 2019, 214, 116571.	3.1	65
20	Luminescence investigations of novel orangeâ€red fluorapatite <scp>KL</scp> aSr ₃ (<scp>PO</scp> ₄) ₃ F: Sm ³⁺ phosphors with high thermal stability. Journal of the American Ceramic Society, 2017, 100, 2221-2231.	3.8	63
21	Revision of structural properties of GdBO3 nanopowders doped with Eu3+ ions through spectroscopic studies. Dalton Transactions, 2012, 41, 5824.	3.3	61
22	Pressure-triggered enormous redshift and enhanced emission in Ca2Gd8Si6O26:Ce3+ phosphors: Ultrasensitive, thermally-stable and ultrafast response pressure monitoring. Chemical Engineering Journal, 2022, 443, 136414.	12.7	58
23	Aqueous Solutions of Uranium(VI) as Studied by Time-Resolved Emission Spectroscopy: A Round-Robin Test. Applied Spectroscopy, 2003, 57, 1027-1038.	2.2	54
24	Hydrothermal Synthesis and Structural and Spectroscopic Properties of the New Triclinic Form of GdBO ₃ :Eu ³⁺ Nanocrystals. Inorganic Chemistry, 2013, 52, 4934-4940.	4.0	54
25	Hydrothermal preparation and photoluminescent properties of MgAl2O4: Eu3+ spinel nanocrystals. Journal of Luminescence, 2010, 130, 434-441.	3.1	53
26	The effects of down- and up-conversion on dual-mode green luminescence from Yb3+- and Tb3+-doped LaPO4 nanocrystals. Journal of Materials Chemistry C, 2013, 1, 5410.	5.5	53
27	Preparation of Biocompatible, Luminescent-Plasmonic Core/Shell Nanomaterials Based on Lanthanide and Gold Nanoparticles Exhibiting SERS Effects. Journal of Physical Chemistry C, 2016, 120, 23788-23798.	3.1	53
28	Photoluminescent properties of LaF3:Eu3+ and GdF3:Eu3+ nanoparticles prepared by co-precipitation method. Journal of Rare Earths, 2009, 27, 588-592.	4.8	51
29	Eu ³⁺ and Tb ³⁺ doped LaPO ₄ nanorods, modified with a luminescent organic compound, exhibiting tunable multicolour emission. RSC Advances, 2014, 4, 46305-46312.	3.6	50
30	Effects of Dopant Addition on Lattice and Luminescence Intensity Parameters of Eu(III)-Doped Lanthanum Orthovanadate. Journal of Physical Chemistry C, 2016, 120, 28497-28508.	3.1	50
31	Luminescence lifetimes of aqueous europium perchlorate, chloride and nitrate solutions. Materials Chemistry and Physics, 1992, 31, 159-161.	4.0	49
32	Facile synthesis, structural and spectroscopic properties of GdF3:Ce3+, Ln3+ (Ln3+=Sm3+, Eu3+, Tb3+,) Tj ETQq	0	Qyerlock 10
33	Optical pressure nano-sensor based on lanthanide doped SrB2O4:Sm2+ luminescence – Novel high-pressure nanomanometer. Sensors and Actuators B: Chemical, 2018, 273, 585-591.	7.8	48
34	Luminescence studies of Eu(III) mixed ligand complexes. Journal of Alloys and Compounds, 2002, 344, 70-74.	5.5	47

35	Preparation and photophysical properties of luminescent nanoparticles based on lanthanide doped fluorides (LaF3:Ce3+, Gd3+, Eu3+), obtained in the presence of different surfactants. Journal of Alloys and Compounds, 2014, 597, 63-71.	5.5	47
36	Dual-center thermochromic Bi2MoO6:Yb3+, Er3+, Tm3+ phosphors for ultrasensitive luminescence thermometry. Journal of Alloys and Compounds, 2022, 890, 161830.	5.5	47

#	Article	IF	CITATIONS
37	Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals. Journal of Nanoparticle Research, 2013, 15, 1958.	1.9	46
38	Synthesis and Organic Surface Modification of Luminescent, Lanthanide-Doped Core/Shell Nanomaterials (LnF ₃ @SiO ₂ @NH ₂ @Organic Acid) for Potential Bioapplications: Spectroscopic, Structural, and <i>in Vitro</i> Cytotoxicity Evaluation. Langmuir, 2014, 30, 9533-9543.	3.5	46
39	Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity. Journal of Nanoparticle Research, 2013, 15, 2068.	1.9	45
40	Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu3+5%@SiO2@NH2. Journal of Colloid and Interface Science, 2016, 481, 245-255.	9.4	45
41	Synthesis, spectroscopic and structural studies on YOF, LaOF and GdOF nanocrystals doped with Eu3+, synthesized via stearic acid method. Optical Materials, 2013, 35, 2226-2233.	3.6	44
42	Energy transfer upconversion dynamics in YVO 4 :Yb 3+ ,Er 3+. Journal of Luminescence, 2016, 170, 560-570.	3.1	44
43	Up-conversion luminescence of Yb3+ and Er3+ doped YPO4, LaPO4 and GdPO4 nanocrystals. Journal of Luminescence, 2016, 175, 21-27.	3.1	43
44	Luminescence of europium(III) compounds in zirconia xerogels. Chemical Physics Letters, 2001, 349, 266-270.	2.6	42
45	Down- and up-converting dual-mode YPO ₄ :Yb ³⁺ ,Tb ³⁺ nanocrystals: synthesis and spectroscopic properties. Dalton Transactions, 2014, 43, 17255-17264.	3.3	42
46	Revised crystal structure and luminescent properties of gadolinium oxyfluoride Gd ₄ O ₃ F ₆ doped with Eu ³⁺ ions. Dalton Transactions, 2014, 43, 6925-6934.	3.3	42
47	Chemiluminescence determination of tetracyclines using Fenton system in the presence europium(III) ions. Analytica Chimica Acta, 2009, 639, 96-100.	5.4	41
48	Synthesis of lanthanide doped CeF 3 :Cd 3+ , Sm 3+ nanoparticles, exhibiting altered luminescence after hydrothermal post-treatment. Journal of Alloys and Compounds, 2016, 661, 182-189.	5.5	40
49	Tm ²⁺ Activated SrB ₄ O ₇ Bifunctional Sensor of Temperature and Pressure—Highly Sensitive, Multiâ€Parameter Luminescence Thermometry and Manometry. Advanced Optical Materials, 2021, 9, 2101507.	7.3	40
50	Luminescence study of europium(III) complexes with several dicarboxylic acids in aqueous solution. Journal of Alloys and Compounds, 1995, 225, 257-260.	5.5	39
51	Formation and dissociation kinetics of Eu(III) complexes with H5do3ap and similar dota-like ligands. Polyhedron, 2007, 26, 4119-4130.	2.2	39
52	Structural, morphological and spectroscopic properties of Eu3+-doped rare earth fluorides synthesized by the hydrothermalmethod. Journal of Solid State Chemistry, 2013, 200, 76-83.	2.9	39
53	UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides. Dalton Transactions, 2020, 49, 2129-2137.	3.3	39
54	Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides. Journal of Nanoparticle Research, 2015, 17, 399.	1.9	38

#	Article	IF	CITATIONS
55	Influence of nanocrystals size on the structural and luminescent properties of GdOF:Eu3+. Journal of Alloys and Compounds, 2012, 539, 82-89.	5.5	37
56	Er3+, Yb3+ co-doped Sr3(PO4)2 phosphors: A ratiometric luminescence thermometer based on Stark levels with tunable sensitivity. Journal of Luminescence, 2020, 227, 117517.	3.1	37
57	Nonlinear Optical Thermometry—A Novel Temperature Sensing Strategy via Second Harmonic Generation (SHG) and Upconversion Luminescence in BaTiO ₃ :Ho ³⁺ ,Yb ³⁺ Perovskite. Advanced Optical Materials, 2021, 9, 2100386.	7.3	37
58	Modification of cellulose fibers with inorganic luminescent nanoparticles based on lanthanide(III) ions. Carbohydrate Polymers, 2019, 206, 742-748.	10.2	36
59	Huge enhancement of Sm ²⁺ emission <i>via</i> Eu ²⁺ energy transfer in a SrB ₄ O ₇ pressure sensor. Journal of Materials Chemistry C, 2020, 8, 4810-4817.	5.5	36
60	Luminescence lifetime of lanthanide(III) ions in aqueous solution containing azide ion. Journal of Alloys and Compounds, 2001, 323-324, 125-127.	5.5	35
61	Photoluminescence properties of nanosized strontium-yttrium borate phosphor Sr3Y2(BO3)4:Eu3+ obtained by the sol-gel Pechini method. Journal of Rare Earths, 2011, 29, 1161-1165.	4.8	35
62	Supersensitive Ratiometric Thermometry and Manometry Based on Dualâ€Emitting Centers in Eu ²⁺ /Sm ²⁺ â€Doped Strontium Tetraborate Phosphors. Advanced Optical Materials, 2022, 10, .	7.3	35
63	Spectroscopic Characterization of Eu(III) Complexes with New Monophosphorus Acid Derivatives of H4dota. Journal of Fluorescence, 2005, 15, 507-512.	2.5	34
64	Luminescent cellulose fibers activated by Eu3+-doped nanoparticles. Cellulose, 2012, 19, 1271-1278.	4.9	34
65	Luminescence properties of calcium tungstate activated by lanthanide(III) ions. Journal of Rare Earths, 2014, 32, 221-225.	4.8	34
66	Emission color tuning and phase transition determination based on high-pressure up-conversion luminescence in YVO4: Yb3+, Er3+ nanoparticles. Journal of Luminescence, 2019, 209, 321-327.	3.1	34
67	Improvement of emission intensity in luminescent materials based on the antenna effect. Journal of Alloys and Compounds, 2000, 300-301, 55-60.	5.5	33
68	Applications of spectroscopic methods in studies of polyoxometalates and their complexes with lanthanide(III) ions. Journal of Alloys and Compounds, 2000, 300-301, 88-94.	5.5	33
69	Magnetic and luminescent hybrid nanomaterial based on Fe3O4 nanocrystals and GdPO4:Eu3+ nanoneedles. Journal of Nanoparticle Research, 2012, 14, 1188.	1.9	33
70	Improving temperature resolution of luminescent nanothermometers working in the near-infrared range using non-thermally coupled levels of Yb3+ & Tm3+. Journal of Luminescence, 2020, 228, 117643.	3.1	32
71	Complexation Study of NpO ⁺ ₂ and UO ²⁺ ₂ lons with Several Organic Ligands in Aqueous Solutions of High Ionic Strength. Radiochimica Acta, 1996, 74, 117-122.	1.2	31
72	Spectral studies of zinc octacarboxyphthalocyanine aggregation. Dyes and Pigments, 2009, 80, 239-244.	3.7	31

#	Article	IF	CITATIONS
73	Tuning luminescence properties of Eu3+ doped CaAl2O4 nanophosphores with Na+ co-doping. Journal of Luminescence, 2013, 133, 102-109.	3.1	31
74	Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe 3 O 4 /SiO 2 /NH 2 /PAA/LnF 3). Journal of Luminescence, 2016, 170, 484-490.	3.1	31
75	Improving performance of luminescent nanothermometers based on non-thermally and thermally coupled levels of lanthanides by modulating laser power. Nanoscale, 2021, 13, 14139-14146.	5.6	31
76	Europium-sensitized Chemiluminescence of System Tetracycline–H2O2–Fe(II)/(III) and Its Application to the Determination of Tetracycline. Journal of Fluorescence, 2008, 18, 1193-1197.	2.5	30
77	LUMINESCENCE STUDY OF Eu(III) COMPLEXES EXTRACTED IN THE ORGANIC PHASE. Solvent Extraction and Ion Exchange, 1991, 9, 637-647.	2.0	29
78	Preparation and Spectroscopy Characterization of Eu:MgAl ₂ O ₄ Nanopowder Prepared by Modified Pechini Method. Journal of Nanoscience and Nanotechnology, 2009, 9, 5803-5810.	0.9	29
79	Comparative studies on structural and luminescent properties of Eu3+:MgAl2O4 and Eu3+/Na+:MgAl2O4 nanopowders and nanoceramics. Optical Materials, 2012, 35, 130-135.	3.6	29
80	Gold nanorods as a high-pressure sensor of phase transitions and refractive-index gauge. Nanoscale, 2019, 11, 8718-8726.	5.6	29
81	Spectroscopic study of ion binding in synthetic polyelectrolytes using lanthanide ions. Inorganica Chimica Acta, 1995, 239, 139-143.	2.4	27
82	Fluorescence of lanthanide(III) complexes in aqueous solutions the influence ofpH and solution composition. Monatshefte Für Chemie, 1985, 116, 901-911.	1.8	26
83	Investigation of Structure, Morphology, and Luminescence Properties in Blueâ€Red Emitter, Europiumâ€Activated ZnAl ₂ O ₄ Nanospinels. European Journal of Inorganic Chemistry, 2012, 2012, 3418-3426.	2.0	26
84	Lifetime and fluorescence quantum yield of uranium(VI) species in hydrolyzed solutions. Journal of Alloys and Compounds, 2000, 300-301, 107-112.	5.5	25
85	Synthesis and tunable emission studies of new up-converting Ba2CdV3O11 nanopowders doped with Yb3+/Ln3+ (Ln3+ = Er3+, Ho3+, Tm3+). Journal of Luminescence, 2018, 200, 59-65.	3.1	25
86	Luminescent–Magnetic Cellulose Fibers, Modified with Lanthanide-Doped Core/Shell Nanostructures. ACS Omega, 2018, 3, 10383-10390.	3.5	25
87	Luminescent-plasmonic, lanthanide-doped core/shell nanomaterials modified with Au nanorods – Up-conversion luminescence tuning and morphology transformation after NIR laser irradiation. Journal of Alloys and Compounds, 2018, 762, 621-630.	5.5	25
88	Chemiluminescence determination of fluoroquinolones using Fenton system in the presence of terbium(iii) ions. Analyst, The, 2011, 136, 2592.	3.5	24
89	Spectroscopic properties of Eu3+ doped YBO3 nanophosphors synthesized by modified co-precipitation method. Journal of Rare Earths, 2011, 29, 1142-1146.	4.8	24
90	New complexes of cobalt(II) ions with pyridinecarboxylic acid N-oxides and 4,4′-byp. Journal of Molecular Structure, 2013, 1034, 128-133.	3.6	24

#	Article	IF	CITATIONS
91	Preparation of multicolor luminescent cellulose fibers containing lanthanide doped inorganic nanomaterials. Journal of Luminescence, 2016, 169, 520-527.	3.1	24
92	Intensification of rare earths luminescence in glasses. Journal of Luminescence, 2003, 102-103, 243-247.	3.1	23
93	Nanosized complex fluorides based on Eu3+ doped Sr2LnF7 (Ln=La, Gd). Journal of Rare Earths, 2014, 32, 242-247.	4.8	23
94	Synthesis and spectroscopic properties of Yb ³⁺ and Tb ³⁺ co-doped GdBO ₃ materials showing down- and up-conversion luminescence. Dalton Transactions, 2015, 44, 4063-4069.	3.3	23
95	<pre><scp>REVO</scp>₄â€Based Nanomaterials (<scp>RE</scp> = Y, La, Cd, and Lu) as Hosts for Yb³⁺/Ho³⁺/Ho³⁺/A/Tm³⁺/Ins: Structural and Upâ€Conversion Luminescence Studies. Journal of the American Ceramic Society. 2016. 99. 3300-3308.</pre>	3.8	23
96	Eu ²⁺ emission from thermally coupled levels – new frontiers for ultrasensitive luminescence thermometry. Journal of Materials Chemistry C, 2022, 10, 1220-1227.	5.5	23
97	A new spectrophotometric method for the determination and simultaneous determination of tungsten and molybdenum in polyoxometalates and their Ln(III) complexes. Journal of Alloys and Compounds, 2000, 303-304, 132-136.	5.5	22
98	Structural and spectroscopic properties of YOF:Eu3+ nanocrystals. Journal of Alloys and Compounds, 2013, 576, 345-349.	5.5	22
99	Luminescent cellulose fibers modified with cerium fluoride doped with terbium particles. Polymer Composites, 2016, 37, 153-160.	4.6	22
100	Energy migration in YBO 3 :Yb 3+ ,Tb 3+ materials: Down- and upconversion luminescence studies. Journal of Alloys and Compounds, 2016, 686, 951-961.	5.5	22
101	Synthesis and Spectroscopic Studies of Chosen Heteropolytungstates and Their Ln(III) Complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1999, 35, 225-231.	1.6	21
102	EPR study of sandwiched gadolinium(III) complexes with polyoxometalates. Journal of Alloys and Compounds, 2002, 341, 307-311.	5.5	21
103	Determination of small amounts of water in dimethylformamide and dimethylsulfoxide using luminescence lifetime measurements of europium(III). Analytical Chemistry, 1991, 63, 2542-2543.	6.5	20
104	Spectroscopic studies of Eu(III) and Nd(III) complexes with several polyoxometalates. Journal of Alloys and Compounds, 2000, 300-301, 370-376.	5.5	20
105	Chemiluminescent systems generating reactive oxygen species from the decomposition of hydrogen peroxide and their analytical applications. TrAC - Trends in Analytical Chemistry, 2013, 44, 1-11.	11.4	20
106	Luminescent-plasmonic effects in GdPO 4 :Eu 3+ nanorods covered with silver nanoparticles. Journal of Luminescence, 2017, 188, 24-30.	3.1	20
107	Comparative studies of structure, spectroscopic properties and intensity parameters of tetragonal rare earth vanadate nanophosphors doped with Eu(III). Journal of Alloys and Compounds, 2018, 741, 459-472.	5.5	20
108	Quantitative resolution of spectroscopic systems using computer-assisted target factor analysis (CAT). Fresenius' Journal of Analytical Chemistry, 2001, 369, 124-133.	1.5	19

#	Article	IF	CITATIONS
109	Application of cause-and-effect diagrams to the interpretation of UV-Vis spectroscopic data. Analytical and Bioanalytical Chemistry, 2002, 372, 333-340.	3.7	19
110	Bifunctional luminescent and magnetic core/shell type nanostructures Fe3O4@CeF3:Tb3+/SiO2. Journal of Rare Earths, 2011, 29, 1117-1122.	4.8	19
111	Synthesis and Spectroscopic Study of Europium(III) in Heteropolyanion [EuP5W30O110]12 Acta Physica Polonica A, 1996, 90, 361-366.	0.5	19
112	Antenna effect in an oxide xerogel. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 2183-2187.	3.9	18
113	Electrochemiluminescence on Dy(III) and Tb(III)-doped Al/Al2O3 surface electrode. Electrochemistry Communications, 2006, 8, 1071-1074.	4.7	18
114	Poly (Isonicotinic Acid N-Oxide–Isonicotinate-N-Oxide-Chloro-Uranyl): The Interpenetrating Grids Created by Coordination and Hydrogen Bonds. Journal of Chemical Crystallography, 2010, 40, 646-649.	1.1	18
115	Synthesis, spectroscopic and structural properties of uranyl complexes based on bipyridine N-oxide ligands. Polyhedron, 2011, 30, 880-885.	2.2	18
116	Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	18
117	White and red emitting LaF 3 nanocrystals doped with Eu 2+ and Eu 3+ ions: Spectroscopic and magnetic studies. Journal of Alloys and Compounds, 2016, 686, 489-495.	5.5	18
118	EPR Study of Gadolinium(III) Complexes with Heteropolyanions: [Gd(SiW11O39)2]13-and [GdP5W30O110]12 Acta Physica Polonica A, 1996, 90, 345-351.	0.5	18
119	Quenching of the triplet state of benzophenone by lanthanide 1,3-diketonate chelates in solutions. Monatshefte Für Chemie, 1988, 119, 669-676.	1.8	17
120	Spectroscopic study of lanthanide(III) complexes with chosen aminoacids and hydroxyacids in solution. Journal of Alloys and Compounds, 2000, 300-301, 38-44.	5.5	17
121	The Antenna Effect of Eu(III) Cryptate Entrapped in Xerogel Matrices. Molecular Crystals and Liquid Crystals, 2000, 354, 207-219.	0.3	17
122	Synthesis and electropolymerization of 3,5-dithienylpyridines, their complexes and N-methylpyridinium cations. Synthetic Metals, 2008, 158, 831-838.	3.9	17
123	The structure and spectroscopy of lanthanide(III) complexes with picolinic acid N-oxide in solution and in the solid state. Materials Chemistry and Physics, 2009, 114, 134-138.	4.0	17
124	Structural and spectroscopy studies of complexes of the uranyl ion with 2,2′-bipyridine-N,N′-dioxide. Polyhedron, 2010, 29, 2081-2086.	2.2	17
125	Luminescence properties of Tm3+/Yb3+, Er3+/Yb3+ and Ho3+/Yb3+ activated calcium tungstate. Journal of Rare Earths, 2011, 29, 1166-1169.	4.8	17
126	Bifunctional magnetic-upconverting luminescent cellulose fibers for anticounterfeiting purposes. Journal of Alloys and Compounds, 2020, 829, 154456.	5.5	17

#	Article	lF	CITATIONS
127	Luminescent materials consisting of Eu(III) ions complexed in heteropolyoxometalates incorporated into silica xerogels. Journal of Non-Crystalline Solids, 2006, 352, 2213-2219.	3.1	16
128	Structural, morphology and luminescence properties of mixed calcium molybdate-tungstate microcrystals doped with Eu3+ ions and changes of the color emission chromaticity. Optical Materials, 2018, 84, 422-426.	3.6	16
129	Up-converting LuF3 and NaLuF4 fluorides doped with Yb3+/Er3+ or Yb3+/Tm3+ ions for latent fingermarks detection. Journal of Alloys and Compounds, 2019, 784, 641-652.	5.5	16
130	A luminescene study of Eu(III) and Tb(III) complexes with aminopolycarboxylic acid ligands. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 79, 25-31.	3.9	15
131	Synthesis and spectroscopic characterisation of chosen heteropolyanions and their Ln(III) complexes containing tetrabutylammonium counter ion. Journal of Alloys and Compounds, 2004, 374, 366-370.	5.5	15
132	An application of the total measurement uncertainty budget concept to the thermodynamic data of uranyl (VI) complexation by sulfate. Journal of Chemical Thermodynamics, 2006, 38, 1274-1284.	2.0	15
133	Kinetic study of dissociation of Eu(III) complex with H8dotp (H8dotp=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylphosphonic acid)). Inorganica Chimica Acta, 2007, 360, 3748-3755.	2.4	15
134	Green-emitting nanoscaled borate phosphors Sr3RE2(BO3)4:Tb3+. Materials Chemistry and Physics, 2013, 140, 447-452.	4.0	15
135	Effect of various surfactants on changes in the emission color chromaticity in upconversion YVO 4 : Yb 3+ , Er 3+ nanoparticles. Optical Materials, 2018, 76, 400-406.	3.6	15
136	Upconversion luminescence in cellulose composites (fibres and paper) modified with lanthanide-doped SrF ₂ nanoparticles. Journal of Materials Chemistry C, 2020, 8, 11922-11928.	5.5	15
137	Simultaneous determination of molybdenum(VI) and tungsten(VI) and its application in elemental analysis of polyoxometalates. Talanta, 2006, 69, 800-806.	5.5	14
138	Synthesis, structural and spectroscopic studies on GdBO3:Yb3+/Tb3+@SiO2 core-shell nanostructures. Journal of Rare Earths, 2015, 33, 1148-1154.	4.8	14
139	Influence of boric acid/Sr2+ ratio on the structure and luminescence properties (colour tuning) of nano-sized, complex strontium borates doped with Sm2+ and Sm3+ ions. Optical Materials, 2018, 83, 245-251.	3.6	14
140	Luminescent-plasmonic core–shell microspheres, doped with Nd3+ and modified with gold nanoparticles, exhibiting whispering gallery modes and SERS activity. Journal of Rare Earths, 2019, 37, 1152-1156.	4.8	14
141	Multiple ratiometric nanothermometry operating with Stark thermally and non-thermally-coupled levels in upconverting Y2â^'xMoO6:xEr3+ nanoparticles. Journal of Alloys and Compounds, 2021, 864, 158891.	5.5	14
142	Boltzmann vs. non-Boltzmann (non-linear) thermometry - Yb3+-Er3+ activated dual-mode thermometer and phase transition sensor via second harmonic generation. Journal of Alloys and Compounds, 2022, 906, 164329.	5.5	14
143	Pressure-driven configurational crossover between 4f7 and 4f65d1 States – Giant enhancement of narrow Eu2+ UV-Emission lines in SrB4O7 for luminescence manometry. Acta Materialia, 2022, 231, 117886.	7.9	14
144	Quantum efficiency of the luminescence of Eu(III), Tb(III) and Dy(III) in aqueous solutions. Monatshefte Für Chemie, 1989, 120, 699-703.	1.8	13

#	Article	IF	CITATIONS
145	Spectroscopic studies of Ln(III) complexes with polyoxometalates in solids, and aqueous and non-aqueous solutions. International Journal of Photoenergy, 2003, 5, 233-238.	2.5	13
146	Spectroscopic properties of neodymium(III)-containing polyoxometalates in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 62, 478-482.	3.9	13
147	Application of cause-and-effect analysis to potentiometric titration. Analytical and Bioanalytical Chemistry, 2005, 382, 1652-1661.	3.7	13
148	Luminescence properties of materials consisting of Eu(III) or Tb(III) complexes with 2,2′-bipyridine N,N′-dioxide and coligands entrapped in xerogels. Optical Materials, 2008, 30, 1225-1232.	3.6	13
149	Luminescence study of europium(III) tris(β-diketonato)/phosphonate complexes in chloroform. Journal of Rare Earths, 2008, 26, 185-191.	4.8	13
150	Electrochemiluminescence Study of Europium (III) Complex with Coumarin3-Carboxylic Acid. International Journal of Photoenergy, 2008, 2008, 1-6.	2.5	13
151	Chemiluminescence determination of ibuprofen and ketoprofen using the Fenton system in the presence of europium(iii) ions. Analytical Methods, 2012, 4, 1964.	2.7	13
152	Nanocrystalline rare earth fluorides doped with Pr3+ ions. Journal of Rare Earths, 2016, 34, 802-807.	4.8	13
153	Synthesis of luminescent KY3F10 nanopowder multi-doped with lanthanide ions by a co-precipitation method. Journal of Rare Earths, 2016, 34, 808-813.	4.8	13
154	Up-conversion green emission of Yb 3+ /Er 3+ ions doped YVO 4 nanocrystals obtained via modified Pechini's method. Optical Materials, 2017, 74, 128-134.	3.6	13
155	Determination of deuterium oxide content in water based on luminescence quenching. Talanta, 2018, 184, 364-368.	5.5	13
156	Influence of matrix on the luminescence properties of Eu2+/Eu3+ doped strontium borates: SrB4O7, SrB2O4 and Sr3(BO3)2, exhibiting multicolor tunable emission. Journal of Alloys and Compounds, 2020, 822, 153511.	5.5	13
157	High-pressure luminescence of monoclinic and triclinic GdBO3: Eu3+. Ceramics International, 2020, 46, 26368-26376.	4.8	13
158	Optically active plasmonic cellulose fibers based on Au nanorods for SERS applications. Carbohydrate Polymers, 2022, 279, 119010.	10.2	13
159	Chemometric and statistical analysis of polyoxometalate interaction with lanthanide(III) ions. Talanta, 2001, 55, 371-386.	5.5	12
160	Luminescence Characterisation of the Reaction System Histidine–KBrO3–Tb(III)–H2SO4. Journal of Fluorescence, 2006, 16, 825-830.	2.5	12
161	Lanthanide complexes with diethyl(2-oxopropyl) phosphonate and diethyl(2-oxo-2-phenylethyl) phosphonate ligands. Journal of Alloys and Compounds, 2008, 451, 395-399.	5.5	12
162	Spectral analysis in ultraweak emissions of chemi- and electrochemiluminescence systems. Journal of Rare Earths, 2009, 27, 593-597.	4.8	12

#	Article	IF	CITATIONS
163	Preparation and characterization of uranyl complexes with phosphonate ligands. Journal of Thermal Analysis and Calorimetry, 2010, 100, 253-260.	3.6	12
164	Spectroscopic studies of lanthanide(III) ion complexes with diethyl(phthalimidomethyl) phosphonate. Journal of Luminescence, 2010, 130, 832-838.	3.1	12
165	Photophysical characterization of La1â^'xEuxBO3 and La1â^'xTbxBO3 nanopowders synthesized by sol–gel Pechini method. Optical Materials, 2013, 35, 1297-1303.	3.6	12
166	Influence ofpH and concentration of complexing agents on fluorescence of europium (III) ethylenediaminetetraacetic acid and europium (III) nitrilotriacetic acid complexes in aqueous solutions. Monatshefte Für Chemie, 1982, 113, 907-913.	1.8	11
167	Electron Paramagnetic Resonance study of chosen gadolinium(III) sandwiched- and encapsulated-polyoxometalate complexes. Journal of Alloys and Compounds, 1998, 275-277, 349-352.	5.5	11
168	Luminescent materials consisting of Eu(III) ions complexed with cryptand ligand and coligands entrapped in xerogel matrices. Journal of Luminescence, 2005, 115, 122-130.	3.1	11
169	Quantitative evaluation of Ln(III) pyridine N-oxide carboxylic acid spectra under chemometric and metrological aspects. Journal of Alloys and Compounds, 2006, 408-412, 962-969.	5.5	11
170	Spectroscopic studies of Eu(III) Keggin's and Dawson's polyoxotungstates substituted by acetato and oxalato ligands. Journal of Alloys and Compounds, 2008, 451, 384-387.	5.5	11
171	Influence of N3-Ions on Chemiluminescence of the Eu(II)/Eu(III)-H2O2System. Acta Physica Polonica A, 1996, 90, 101-108.	0.5	11
172	EPR study of selected gadolinium complexes: β-diketonates and polycarboxylates. Radiation Physics and Chemistry, 1995, 45, 935-938.	2.8	10
173	Complexation of f electron (3+) ions with pseudohalide ligands. Journal of Alloys and Compounds, 1998, 275-277, 754-758.	5.5	10
174	Gadolinium(III) cryptates investigated by multifrequency EPR. Journal of Alloys and Compounds, 2008, 451, 182-185.	5.5	10
175	Spectroscopic speciation and structural characterisation of uranyl(VI) interaction with pyridine carboxylic acid N-oxide derivatives. Inorganica Chimica Acta, 2010, 363, 3847-3855.	2.4	10
176	An impact of sintering temperature and doping level on structural and spectral properties of Eu-doped strontium aluminium oxide. Journal of Rare Earths, 2011, 29, 1105-1110.	4.8	10
177	Effect of the Ce3+ ions co-doping on the emission color of the up-converting NaYbF4 doped with Ho3+ ions. Ceramics International, 2020, 46, 26382-26387.	4.8	10
178	Y ₂ (Ge,Si)O ₅ :Pr phosphors: multimodal temperature and pressure sensors shaped by bandgap management. Journal of Materials Chemistry C, 2021, 9, 13818-13831.	5.5	10
179	Influence of the change of the oxidation state of the rare earths upon their mass fragmentation in acetylacetonate complexes. Inorganica Chimica Acta, 1989, 155, 259-261.	2.4	9
180	Threshold bootstrap target factor analysis study of neodymium with pyridine 2,4 dicarboxylic acid N-oxide—an investigation of traceability. Talanta, 2004, 63, 287-296.	5.5	9

#	Article	IF	CITATIONS
181	Synthesis, spectroscopic characterization and antifungal activity studies of five novel complexes with pyridine carboxamides. Polyhedron, 2017, 133, 187-194.	2.2	9
182	Influence ofpH and concentration of complexing agents on fluorescence of samarium(III), gadolinium(III), and terbium(III)?Ethylenediaminetetraacetic acid or nitrilotriacetic acid complexes in aqueous solutions. Monatshefte Für Chemie, 1983, 114, 185-193.	1.8	8
183	Spectrofluorimetric determination of trace amounts of Tb(III) using acetylacetone in ethanol solution. Fresenius Zeitschrift Für Analytische Chemie, 1988, 330, 698-699.	0.8	8
184	On the role of the ground state Tb(III)/acetylacetone complex in sensitized emission of Tb(III) in ethanol solution. Monatshefte Für Chemie, 1989, 120, 821-826.	1.8	8
185	Spectroscopic studies of the lanthanide(III) ions with pyridine carboxylic acid N-oxide ligands and in mixed ligand complexes. Molecular Physics, 2003, 101, 977-981.	1.7	8
186	Luminescence study of lanthanide(III) ions in non-aqueous solutions containing azide ions. Journal of Alloys and Compounds, 2004, 380, 173-176.	5.5	8
187	Dissociation kinetics study of Ce(III) complexes with H8dotp (H8dotp=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis (methylphosphonic acid)). Journal of Alloys and Compounds, 2008, 451, 42-45.	5.5	8
188	Effects of bis(salicylidene)trimethylenediamine and 2,2′-bipyridyl on luminescence and extraction of tris(pivaloyltrifluoroacetonato)Eu(III). Inorganica Chimica Acta, 2009, 362, 3641-3647.	2.4	8
189	Luminescence study of praseodymium complexes with selected phosphonate ligands. Optical Materials, 2011, 33, 1544-1547.	3.6	8
190	Pyridine N-oxide complexes of Cu(II) ions with pseudohalides: Synthesis, structural and spectroscopic characterization. Polyhedron, 2014, 81, 728-734.	2.2	8
191	Effect of ionic substitution (Ca/Sr/Ba) on structure and luminescent properties of Ce3+ doped fluorapatite. Journal of Luminescence, 2018, 196, 285-289.	3.1	8
192	Mass spectrometric behaviour of M(acac)3 complexes (M=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,) Tj ETC spectrometry. Inorganica Chimica Acta, 1991, 184, 229-233.	2q0 0 0 rgl 2.4	BT /Overlock 7
193	Spectroscopic characterization of chosen Ln(III) polyoxometalate complexes with organic counter cations in solid and in non-aqueous solutions. Journal of Alloys and Compounds, 2006, 408-412, 958-961.	5.5	7
194	The Interaction of ArsenazoÂIII withÂNd(III)—AÂChemometric and Metrological Analysis. Journal of Solution Chemistry, 2008, 37, 933-946.	1.2	7
195	Electrogenerated luminescence of chosen lanthanide complexes at stationary oxide-covered aluminium electrode. Journal of Alloys and Compounds, 2008, 451, 81-83.	5.5	7
196	Spectroscopic studies of lanthanides complexes with diethyl benzylphosphonate and diethylphosphonoacetic acid. Journal of Alloys and Compounds, 2008, 451, 388-394.	5.5	7
197	The structure and spectroscopic characterization of complexes with tetraethyl methylenediphosphonate in solution and in solid state. Journal of Molecular Structure, 2012, 1011, 145-148.	3.6	7
198	Semiempirical and DFT computations of the influence of Tb(III) dopant on unit cell dimensions of cerium(III) fluoride. Journal of Computational Chemistry, 2015, 36, 193-199.	3.3	7

#	Article	IF	CITATIONS
199	A new synthesis approach for upconverting nanoparticles based on rare earth ternary vanadates. Ceramics International, 2020, 46, 26309-26316.	4.8	7
200	Lanthanide Luminescence Enhancement of Core–Shell Magnetite–SiO ₂ Nanoparticles Covered with Chain-Structured Helical Eu/Tb Complexes. ACS Omega, 2020, 5, 32930-32938.	3.5	7
201	Spectroscopic Studies of Polyoxometalates and their Complexes with Lanthanide(III) Ions in Solution. Acta Physica Polonica A, 1996, 90, 275-283.	0.5	7
202	Fluorescence of lanthanide(III) complexes with aminopolyacetic acids in aqueous solutions. Monatshefte Für Chemie, 1987, 118, 907-921.	1.8	6
203	Spectrofluorimetric determination of Dy(III) with acetylacetone. Fresenius Zeitschrift Für Analytische Chemie, 1988, 332, 63-64.	0.8	6
204	Energy transfer in the chemiluminescent system: Eu(II)/(III)–Nâ^'3–H2O2. Journal of Alloys and Compounds, 2001, 323-324, 670-672.	5.5	6
205	Emission spectroscopic properties of water soluble porphyrins in hydrogen peroxide chemiluminescence system with d - and f -electron metals. Journal of Solid State Chemistry, 2003, 171, 208-211.	2.9	6
206	Spectral properties of Eu(III) complexes with heteropolyanions immobilised in xerogel matrices. Journal of Alloys and Compounds, 2004, 380, 205-210.	5.5	6
207	Spectroscopic properties of Y1â^'xEuxBO3 and Y1â^'xTbxBO3 nanopowders obtained by the sol–gel Pechini method. Journal of Luminescence, 2014, 155, 374-383.	3.1	6
208	Novel apatite KLaSr ₃ (PO ₄) ₃ F:Eu ²⁺ phosphors: synthesis, structure, and luminescence properties. Journal of Materials Research, 2016, 31, 3489-3497.	2.6	6
209	Importance of the ligand excess in investigations of the fluorescence intensity of the lanthanide(III) complexes of aminopolyacetic acids in aqueous solutions. Inorganica Chimica Acta, 1987, 139, 299-300.	2.4	5
210	Statistical analysis of the impact of spectral correlation on observed formation constants from UV?visible spectroscopic measurements. Analytical and Bioanalytical Chemistry, 2004, 378, 221-226.	3.7	5
211	Influence of xerogel matrices and co-ligands on luminescence parameters in materials with an europium(III) cryptate. Journal of Non-Crystalline Solids, 2005, 351, 2047-2056.	3.1	5
212	Chemiluminescence characterisation of the reaction system Tb(III)–amino acid–peroxynitrous acid. Journal of Alloys and Compounds, 2008, 451, 186-189.	5.5	5
213	Complexation studies of 3-substituted \hat{l}^2 -diketones with selected d- and f-metal ions. Chemical Papers, 2011, 65, .	2.2	5
214	Ultraweak emission of the Eu(III) ions in cathodic generated electrochemiluminescence. Optical Materials, 2011, 33, 1540-1543.	3.6	5
215	Four new amide derivatives of pyridinecarboxylic acids. Synthesis, structure and spectroscopic characterization. Journal of Molecular Structure, 2017, 1145, 86-93.	3.6	5
216	Five subsequent new pyridine carboxamides and their complexes with d-electron ions. Synthesis, spectroscopic characterization and magnetic properties. Journal of Molecular Structure, 2019, 1178, 669-681.	3.6	5

#	Article	IF	CITATIONS
217	Up-converting nanophosphors based on Yb3+/Ho3+ doped NaM(WO4)2 (M = Gd, Y) synthesized in situ under hydrothermal conditions. Optical Materials, 2020, 107, 109979.	3.6	5
218	Surface Modification of Luminescent Ln ^{III} Fluoride Core–Shell Nanoparticles with Acetylsalicylic acid (Aspirin): Synthesis, Spectroscopic and <i>in Vitro</i> Hemocompatibility Studies. ChemMedChem, 2020, 15, 1490-1496.	3.2	5
219	3,5-Dihydroxy Benzoic Acid-Capped CaF2:Tb3+ Nanocrystals as Luminescent Probes for the WO42– Ion in Aqueous Solution. ACS Omega, 2020, 5, 4568-4575.	3.5	5
220	Ligand‣ensitised LaF 3 :Eu 3+ and SrF 2 :Eu 3+ Nanoparticles and in Vitro Haemocompatiblity Studies. ChemMedChem, 2021, 16, 1640-1650.	3.2	5
221	EPR study of selected gadolinium β-diketonates. Journal of Applied Spectroscopy, 1995, 62, 938-941.	0.7	4
222	Luminescence study of complexation of Eu(III) and Tb(III) with N-methyliminodiacetic acid. Journal of Alloys and Compounds, 1995, 225, 515-519.	5.5	4
223	Spectroscopic studies of the complexes formed between lanthanide ions and N-(2-hydroxyethyl)iminodiacetic acid in solution. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 119, 109-114.	3.9	4
224	Importance of a role of(EuN3)2+complex generated in theEu3+/N3-/H2O2system studied by the chemiluminescent method. International Journal of Photoenergy, 2001, 3, 201-203.	2.5	4
225	Photoluminescence and electrochemiluminescence studies of chosen rare earths systems. Journal of Rare Earths, 2008, 26, 192-197.	4.8	4
226	Direct spectroscopic speciation of the complexation of U(VI) in acetate solution. Monatshefte Für Chemie, 2014, 145, 1689-1696.	1.8	4
227	Structure modeling of terbium doped strontium-lanthanum borate. Journal of Rare Earths, 2014, 32, 248-253.	4.8	4
228	A series of new pyridine carboxamide complexes and self-assemblies with Tb(III), Eu(III), Zn(II), Cu(II) ions and their luminescent and magnetic properties. Journal of Coordination Chemistry, 2019, 72, 727-748.	2.2	4
229	Adenosine capped CaF2:Eu3+ nanocrystals and their applications in permanganate detection. Optical Materials, 2020, 107, 110048.	3.6	4
230	Bi3+ as an enhancer for down- and upconversion luminescence in ternary vanadate structures. Ceramics International, 2021, 47, 24182-24190.	4.8	4
231	Ratiometric Upconversion Temperature Sensor Based on Cellulose Fibers Modified with Yttrium Fluoride Nanoparticles. Nanomaterials, 2022, 12, 1926.	4.1	4
232	A comparative study on chemiluminescence propperties of some inorganic systems. International Journal of Photoenergy, 2003, 5, 239-242.	2.5	3
233	Spectroscopy, chemometrics and metrology—three aspects of lanthanide chemistry. Journal of Alloys and Compounds, 2004, 380, 413-417.	5.5	3
234	Luminescent studies of Ln(III) complexes with 4-amino-6-methylpicolinic acid N-oxide at 77K. Journal of Luminescence, 2007, 122-123, 221-226.	3.1	3

#	Article	IF	CITATIONS
235	Organic–Inorganic Hybrid Material [Na+(ClO4)â^'(C6H5NO3)(H2O)]: Very Short Intramolecular Hydrogen Bond And Hierarchy of Intermolecular Interactions. Journal of Chemical Crystallography, 2012, 42, 588-592.	1.1	3
236	Electrochemical capacitor materials based on carbon and luminophors doped with lanthanide ions. Journal Physics D: Applied Physics, 2017, 50, 415502.	2.8	3
237	Synthesis of highly luminescent nanocomposite LaF3:Ln3+/Q-dots-CdTe system, exhibiting tunable red-to-green emission. Chemical Papers, 2019, 73, 2907-2911.	2.2	3
238	GdBO3 and YBO3 crystals under compression. Journal of Alloys and Compounds, 2021, 866, 158962.	5.5	3
239	Estimation of Fibre Orientation in Paper Products by an Image Analysis On-line System. Fibres and Textiles in Eastern Europe, 2016, 24, 107-112.	0.5	3
240	New Multicolor Tungstate-Molybdate Microphosphors as an Alternative to LED Components. Materials, 2021, 14, 6608.	2.9	3
241	Generation of Pure Green Up-Conversion Luminescence in Er3+ Doped and Yb3+-Er3+ Co-Doped YVO4 Nanomaterials under 785 and 975 nm Excitation. Nanomaterials, 2022, 12, 799.	4.1	3
242	Positive/negative liquid secondary ion mass spectrometry ofLn-EDTA (1:1) complexes. Formation of molecular ion adducts with neutral species of the matrix orLn-EDTA. Monatshefte FÃ1⁄4r Chemie, 1992, 123, 225-230.	1.8	2
243	Spectroscopic Study of DHDA Complex Formation of d- and f-Electron Metal Ions in Methanol Solution. Journal of Fluorescence, 2005, 15, 493-497.	2.5	2
244	Influence of Lanthanide(III) Ions on the Reaction System Tryptophan—H2O2–Fe(II). International Journal of Photoenergy, 2007, 2007, 1-7.	2.5	2
245	Synthesis, complexation studies and structural characterization of d and f metal ion complexes with 4-chloroquinaldinic acid N-oxide. Journal of Molecular Structure, 2012, 1010, 59-66.	3.6	2
246	Hydrolysis contributions in U(VI) spectroscopic speciation in acetate media. Inorganica Chimica Acta, 2015, 426, 113-118.	2.4	2
247	Pairs of Ln(III) dopant ions in crystalline solid luminophores: an ab initio computational study. Journal of Rare Earths, 2016, 34, 820-827.	4.8	2
248	Ab initio study of pressure-induced phase transition, band gaps and X-ray photoemission valence band spectra of YVO4. Computational Materials Science, 2016, 117, 98-102.	3.0	2
249	Spectroscopic Characterization of Ethylenediamine-di(o-hydroxyphenyl)acetic Acid and its Complexes with Lanthanide(III) Ions. Acta Physica Polonica A, 1996, 90, 353-359.	0.5	2
250	Photophysical characterization of chosen Ln(III) macromolecular complexes. International Journal of Photoenergy, 2005, 7, 147-151.	2.5	1
251	Energy transfer process in the reaction systemNH2OH-OH-NaOH-CU(II)â^ Eu(III)/ thenoyltrifluoroacetone. International Journal of Photoenergy, 2005, 7, 143-146.	2.5	1
252	Chemometrics in f-element speciation: a metrological challenge?. Accreditation and Quality Assurance, 2011, 16, 199-205.	0.8	1

#	Article	IF	CITATIONS
253	The structural and spectroscopic studies of complexes with diethyl benzylphosphonate and diethyl (carboxymethyl)phosphonate in solution and in the solid state. Polyhedron, 2013, 62, 243-249.	2.2	1
254	Kinetic and spectral studies of EHPG systems using chemi- and electrochemiluminescence methods. Journal of Rare Earths, 2010, 28, 868-873.	4.8	0
255	Quality assurance of thermodynamic data. Accreditation and Quality Assurance, 2011, 16, 177-178.	0.8	0
256	Synthesis and luminescence tunability studies in new upconverting Ba2V2O7: Yb, Ho phosphors. Polyhedron, 2022, , 115940.	2.2	0
257	Investigation on various emission colours in composite materials based on carbon and luminophors doped with lanthanide ions. Polyhedron, 2022, 223, 115953.	2.2	0