
Man Sup Kwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4305742/publications.pdf Version: 2024-02-01

MAN SUD KWAK

#	Article	IF	CITATIONS
1	Canagliflozin protects against cisplatin-induced acute kidney injury by AMPK-mediated autophagy in renal proximal tubular cells. Cell Death Discovery, 2022, 8, 12.	4.7	18
2	Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy, 2021, 17, 2345-2362.	9.1	62
3	HMGB1 orchestrates STING-mediated senescence via TRIM30α modulation in cancer cells. Cell Death Discovery, 2021, 7, 28.	4.7	15
4	Reactive oxygen species induce Cys106-mediated anti-parallel HMGB1 dimerization that protects against DNA damage. Redox Biology, 2021, 40, 101858.	9.0	19
5	The collagen structure of C1q induces wound healing by engaging discoidin domain receptor 2. Molecular Medicine, 2021, 27, 125.	4.4	14
6	Inflammasome-Dependent Peroxiredoxin 2 Secretion Induces the Classical Complement Pathway Activation. Immune Network, 2021, 21, e36.	3.6	7
7	Sulfatide Inhibits HMGB1 Secretion by Hindering Toll-Like Receptor 4 Localization Within Lipid Rafts. Frontiers in Immunology, 2020, 11, 1305.	4.8	15
8	Immunological Significance of HMGB1 Post-Translational Modification and Redox Biology. Frontiers in Immunology, 2020, 11, 1189.	4.8	76
9	Peroxiredoxin-mediated disulfide bond formation is required for nucleocytoplasmic translocation and secretion of HMGB1 in response to inflammatory stimuli. Redox Biology, 2019, 24, 101203.	9.0	45
10	Inflachromene inhibits autophagy through modulation of Beclin 1 activity. Journal of Cell Science, 2018, 131, .	2.0	14
11	High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation. Frontiers in Immunology, 2018, 9, 705.	4.8	51
12	N-linked glycosylation plays a critical role for the secretion of HMGB1. Journal of Cell Science, 2016, 129, 29-38.	2.0	42
13	HMGB1 Binds to Lipoteichoic Acid and Enhances TNF-a and IL-6 Production through HMGB1-Mediated Transfer of Lipoteichoic Acid to CD14 and TLR2. Journal of Innate Immunity, 2015, 7, 405-416.	3.8	44
14	The Role of High Mobility Group Box 1 in Innate Immunity. Yonsei Medical Journal, 2014, 55, 1165.	2.2	94
15	High Mobility Group Nucleosomal Binding Domain 2 (HMGN2) SUMOylation by the SUMO E3 Ligase PIAS1 Decreases the Binding Affinity to Nucleosome Core Particles. Journal of Biological Chemistry, 2014, 289, 20000-20011.	3.4	13
16	Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Research, 2014, 23, 657-667.	2.4	35
17	Chaperone-like Activity of High-Mobility Group Box 1 Protein and Its Role in Reducing the Formation of Polyglutamine Aggregates. Journal of Immunology, 2013, 190, 1797-1806.	0.8	45
18	Current Understanding of HMGB1-mediated Autophagy. Journal of Bacteriology and Virology, 2013, 43, 148.	0.1	1

MAN SUP KWAK

#	Article	IF	CITATIONS
19	Identification of lipopolysaccharideâ€binding peptide regions within HMGB1 and their effects on subclinical endotoxemia in a mouse model. European Journal of Immunology, 2011, 41, 2753-2762.	2.9	69
20	Dissected effect of a transit peptide of the ADP-glucose pyrophosphorylase gene from sweetpotato (ibAGP2) in increasing foreign protein accumulation. Plant Cell Reports, 2008, 27, 1359-1367.	5.6	5
21	A Sepal-Expressed ADP-Clucose Pyrophosphorylase Gene (NtAGP) Is Required for Petal Expansion Growth in â€~Xanthi' Tobacco. Plant Physiology, 2007, 145, 277-289.	4.8	12
22	A strong constitutive gene expression system derived from ibAGP1 promoter and its transit peptide. Plant Cell Reports, 2007, 26, 1253-1262.	5.6	14
23	Two sweetpotato ADP-glucose pyrophosphorylase isoforms are regulated antagonistically in response to sucrose content in storage roots. Gene, 2006, 366, 87-96.	2.2	20