Man Sup Kwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4305742/publications.pdf

Version: 2024-02-01

687220 642610 23 730 13 23 citations h-index g-index papers 24 24 24 1077 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Role of High Mobility Group Box 1 in Innate Immunity. Yonsei Medical Journal, 2014, 55, 1165.	0.9	94
2	Immunological Significance of HMGB1 Post-Translational Modification and Redox Biology. Frontiers in Immunology, 2020, $11,1189$.	2.2	76
3	Identification of lipopolysaccharideâ€binding peptide regions within HMGB1 and their effects on subclinical endotoxemia in a mouse model. European Journal of Immunology, 2011, 41, 2753-2762.	1.6	69
4	Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy, 2021, 17, 2345-2362.	4.3	62
5	High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation. Frontiers in Immunology, 2018, 9, 705.	2.2	51
6	Chaperone-like Activity of High-Mobility Group Box 1 Protein and Its Role in Reducing the Formation of Polyglutamine Aggregates. Journal of Immunology, 2013, 190, 1797-1806.	0.4	45
7	Peroxiredoxin-mediated disulfide bond formation is required for nucleocytoplasmic translocation and secretion of HMGB1 in response to inflammatory stimuli. Redox Biology, 2019, 24, 101203.	3.9	45
8	HMGB1 Binds to Lipoteichoic Acid and Enhances TNF-a and IL-6 Production through HMGB1-Mediated Transfer of Lipoteichoic Acid to CD14 and TLR2. Journal of Innate Immunity, 2015, 7, 405-416.	1.8	44
9	N-linked glycosylation plays a critical role for the secretion of HMGB1. Journal of Cell Science, 2016, 129, 29-38.	1.2	42
10	Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Research, 2014, 23, 657-667.	1.3	35
11	Two sweetpotato ADP-glucose pyrophosphorylase isoforms are regulated antagonistically in response to sucrose content in storage roots. Gene, 2006, 366, 87-96.	1.0	20
12	Reactive oxygen species induce Cys106-mediated anti-parallel HMGB1 dimerization that protects against DNA damage. Redox Biology, 2021, 40, 101858.	3.9	19
13	Canagliflozin protects against cisplatin-induced acute kidney injury by AMPK-mediated autophagy in renal proximal tubular cells. Cell Death Discovery, 2022, 8, 12.	2.0	18
14	Sulfatide Inhibits HMGB1 Secretion by Hindering Toll-Like Receptor 4 Localization Within Lipid Rafts. Frontiers in Immunology, 2020, 11, 1305.	2.2	15
15	HMGB1 orchestrates STING-mediated senescence via TRIM30α modulation in cancer cells. Cell Death Discovery, 2021, 7, 28.	2.0	15
16	A strong constitutive gene expression system derived from ibAGP1 promoter and its transit peptide. Plant Cell Reports, 2007, 26, 1253-1262.	2.8	14
17	Inflachromene inhibits autophagy through modulation of Beclin 1 activity. Journal of Cell Science, 2018, 131, .	1.2	14
18	The collagen structure of C1q induces wound healing by engaging discoidin domain receptor 2. Molecular Medicine, 2021, 27, 125.	1.9	14

#	Article	IF	CITATIONS
19	High Mobility Group Nucleosomal Binding Domain 2 (HMGN2) SUMOylation by the SUMO E3 Ligase PIAS1 Decreases the Binding Affinity to Nucleosome Core Particles. Journal of Biological Chemistry, 2014, 289, 20000-20011.	1.6	13
20	A Sepal-Expressed ADP-Glucose Pyrophosphorylase Gene (NtAGP) Is Required for Petal Expansion Growth in â€~Xanthi' Tobacco. Plant Physiology, 2007, 145, 277-289.	2.3	12
21	Inflammasome-Dependent Peroxiredoxin 2 Secretion Induces the Classical Complement Pathway Activation. Immune Network, 2021, 21, e36.	1.6	7
22	Dissected effect of a transit peptide of the ADP-glucose pyrophosphorylase gene from sweetpotato (ibAGP2) in increasing foreign protein accumulation. Plant Cell Reports, 2008, 27, 1359-1367.	2.8	5
23	Current Understanding of HMGB1-mediated Autophagy. Journal of Bacteriology and Virology, 2013, 43, 148.	0.0	1