Mehrdad Shaygan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4305113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	X-Band MMIC Balanced Frequency Doubler based on Graphene Diodes. , 2019, , .		7
2	Flexible One-Dimensional Metal–Insulator–Graphene Diode. ACS Applied Electronic Materials, 2019, 1, 945-950.	4.3	26
3	Graphene-Diode-Based Frequency Conversion Mixers for High-Frequency Applications. , 2019, , .		1
4	Probing the mechanical properties of vertically-stacked ultrathin graphene/Al ₂ O ₃ heterostructures. Nanotechnology, 2019, 30, 185703.	2.6	9
5	Zero-Bias 50-dB Dynamic Range Linear-in-dB V-Band Power Detector Based on CVD Graphene Diode on Glass. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 2018-2024.	4.6	18
6	Toward Highly Sensitive and Energy Efficient Ammonia Gas Detection with Modified Single-Walled Carbon Nanotubes at Room Temperature. ACS Sensors, 2018, 3, 79-86.	7.8	106
7	Graphene integrated circuits: new prospects towards receiver realisation. Nanoscale, 2018, 10, 93-99.	5.6	20
8	Large-Signal Metal-Insulator-Graphene Diode Model on a Flexible Substrate for Microwave Application. , 2018, , .		6
9	All CVD Boron Nitride Encapsulated Graphene FETs With CMOS Compatible Metal Edge Contacts. IEEE Transactions on Electron Devices, 2018, 65, 4129-4134.	3.0	27
10	Metal–Insulator–Graphene Diode Mixer Based on CVD Graphene-on-Glass. IEEE Electron Device Letters, 2018, 39, 1104-1107.	3.9	18
11	6–12 GHz MMIC Double-Balanced Upconversion Mixer based on Graphene Diode. , 2018, , .		9
12	0.15 mm ² , DC-70GHz, Graphene-Based Power Detector with Improved Sensitivity and Dynamic Range. , 2018, , .		7
13	Enhancing the stiffness of vertical graphene sheets through ion beam irradiation and fluorination. Nanotechnology, 2017, 28, 295701.	2.6	13
14	Low Resistive Edge Contacts to CVDâ€Grown Graphene Using a CMOS Compatible Metal. Annalen Der Physik, 2017, 529, 1600410.	2.4	29
15	High performance metal–insulator–graphene diodes for radio frequency power detection application. Nanoscale, 2017, 9, 11944-11950.	5.6	37
16	Zero-bias, 50 dB dynamic range, V-band power detector based on CVD graphene-on-glass. , 2017, , .		5
17	Millimeter-wave graphene-based varactor for flexible electronics. , 2017, , .		4
18	Flexible Hall sensors based on graphene. Nanoscale, 2016, 8, 7683-7687.	5.6	61

MEHRDAD SHAYGAN

#	Article	IF	CITATIONS
19	Highly sensitive photodetectors using ZnTe/ZnO core/shell nanowire field effect transistors with a tunable core/shell ratio. Journal of Materials Chemistry C, 2016, 4, 2040-2046.	5.5	17
20	Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition. Nanotechnology, 2016, 27, 155701.	2.6	25
21	A Study on the Stoichiometry of One-Dimensional Nanostructures. Advances in Condensed Matter Physics, 2015, 2015, 1-6.	1.1	0
22	Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors. Nano Research, 2015, 8, 1229-1240.	10.4	32
23	Fabrication of vertical graphene-based nanocomposite thin films. Journal of Materials Research, 2015, 30, 617-625.	2.6	11
24	Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon, 2014, 72, 372-380.	10.3	121
25	Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector. Physical Chemistry Chemical Physics, 2014, 16, 22687-22693.	2.8	54
26	Annealing effect on the thermal conductivity of thermoelectric ZnTe nanowires. Materials Letters, 2014, 135, 87-91.	2.6	2
27	Optimization of the magnetic properties and microstructure of Co2+–La3+ substituted strontium hexaferrite by varying the production parameters. Ceramics International, 2014, 40, 5675-5680.	4.8	16
28	In Situ Observation of Melting Behavior of ZnTe Nanowires. Journal of Physical Chemistry C, 2014, 118, 15061-15067.	3.1	12
29	A Growth Mechanism for Free-Standing Vertical Graphene. Nano Letters, 2014, 14, 3064-3071.	9.1	221
30	Nanowire Field Effect Transistors in Optoelectronics. , 2014, , 187-224.		1
31	Bandgap engineering of CdxZn1â ''xTe nanowires. Nanoscale, 2013, 5, 932.	5.6	8
32	The Effect of Chromium and Aluminium Ion Substitution on Phase Analysis, Microstructure and Magnetic Properties of Sr-Hexaferrite Ceramics and Nanopowders Synthesized by the Auto Combustion Route. Molecular Crystals and Liquid Crystals, 2012, 555, 94-103.	0.9	4
33	Post-growth modification of electrical properties of ZnTe nanowires. Chemical Physics Letters, 2012, 543, 117-120.	2.6	7
34	The effect of nano sized SrFe12O19 additions on the magnetic properties of chromium-doped strontium-hexaferrite ceramics. Journal of Materials Science: Materials in Electronics, 2011, 22, 1297-1302.	2.2	32