Xiang Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4305056/publications.pdf Version: 2024-02-01

XIANC XIAO

#	Article	IF	CITATIONS
1	Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnology Letters, 2008, 30, 919-923.	1.1	124
2	Role and Regulation of Fatty Acid Biosynthesis in the Response of <i>Shewanella piezotolerans</i> WP3 to Different Temperatures and Pressures. Journal of Bacteriology, 2009, 191, 2574-2584.	1.0	112
3	Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Applied Microbiology and Biotechnology, 2012, 93, 1769-1776.	1.7	107
4	Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, 2007, 52, 29-39.	1.8	73
5	Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. Physical Chemistry Chemical Physics, 2012, 14, 9966.	1.3	73
6	Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions. Bioresource Technology, 2012, 110, 86-90.	4.8	70
7	Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1. Journal of Hazardous Materials, 2015, 288, 134-139.	6.5	70
8	Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosensors and Bioelectronics, 2011, 26, 3987-3992.	5.3	69
9	Cadmium-Induced Germline Apoptosis in Caenorhabditis elegans: The Roles of HUS1, p53, and MAPK Signaling Pathways. Toxicological Sciences, 2008, 102, 345-351.	1.4	59
10	Reactive oxygen species (ROS) generated by cyanobacteria act as an electron acceptor in the biocathode of a bio-electrochemical system. Biosensors and Bioelectronics, 2013, 39, 306-310.	5.3	58
11	Surface Modification of Basalt Fiber with Organic/Inorganic Composites for Biofilm Carrier Used in Wastewater Treatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 2596-2602.	3.2	58
12	Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa. Limnologica, 2011, 41, 70-77.	0.7	55
13	Interpretation of adhesion behaviors between bacteria and modified basalt fiber by surface thermodynamics and extended DLVO theory. Colloids and Surfaces B: Biointerfaces, 2019, 177, 454-461.	2.5	55
14	Impairment of Biofilm Formation by TiO ₂ Photocatalysis through Quorum Quenching. Environmental Science & Technology, 2016, 50, 11895-11902.	4.6	53
15	Degradation of rhodamine B in a novel bio-photoelectric reductive system composed of Shewanella oneidensis MR-1 and Ag3PO4. Environment International, 2019, 126, 560-567.	4.8	51
16	Role of electricity production in the anaerobic decolorization of dye mixture by exoelectrogenic bacterium Shewanella oneidensis MR-1. Bioresource Technology, 2013, 136, 176-181.	4.8	42
17	A simple method for assaying anaerobic biodegradation of dyes. Bioresource Technology, 2018, 251, 204-209.	4.8	41
18	Biosynthesis of FeS nanoparticles from contaminant degradation in one single system. Biochemical Engineering Journal, 2016, 105, 214-219.	1.8	38

XIANG XIAO

#	Article	IF	CITATIONS
19	A sustainable bio-carrier medium for wastewater treatment: Modified basalt fiber. Journal of Cleaner Production, 2019, 225, 472-480.	4.6	37
20	Anaerobic reduction of 2,6â€dinitrotoluene by <i>Shewanella oneidensis</i> MRâ€1: Roles of Mtr respiratory pathway and NfnB. Biotechnology and Bioengineering, 2017, 114, 761-768.	1.7	35
21	Self-assembly of complex hollow CuS nano/micro shell by an electrochemically active bacterium Shewanella oneidensis MR-1. International Biodeterioration and Biodegradation, 2017, 116, 10-16.	1.9	35
22	Decolorization and detoxification of a sulfonated triphenylmethane dye aniline blue by Shewanella oneidensis MR-1 under anaerobic conditions. Applied Microbiology and Biotechnology, 2013, 97, 7439-7446.	1.7	34
23	Molecular mechanisms of microbial transmembrane electron transfer of electrochemically active bacteria. Current Opinion in Chemical Biology, 2020, 59, 104-110.	2.8	32
24	Determination of autoinducer-2 in biological samples by high-performance liquid chromatography with fluorescence detection using pre-column derivatization. Journal of Chromatography A, 2014, 1361, 162-168.	1.8	30
25	Breaking the loop: Tackling homoacetogenesis by chloroform to halt hydrogen production-consumption loop in single chamber microbial electrolysis cells. Chemical Engineering Journal, 2020, 389, 124436.	6.6	30
26	Hydrogen production from lignocellulosic hydrolysate in an up-scaled microbial electrolysis cell with stacked bio-electrodes. Bioresource Technology, 2021, 320, 124314.	4.8	28
27	Influence of biosurfactant-producing strain Bacillus subtilis BS1 on the mycoremediation of soils contaminated with phenanthrene. International Biodeterioration and Biodegradation, 2012, 75, 36-42.	1.9	27
28	Feasibility of using basalt fiber as biofilm Carrier to construct bio-nest for wastewater treatment. Chemosphere, 2018, 212, 768-776.	4.2	27
29	Involvement of c-type cytochrome CymA in the electron transfer of anaerobic nitrobenzene reduction by Shewanella oneidensis MR-1. Biochemical Engineering Journal, 2012, 68, 227-230.	1.8	26
30	Impact of nano-TiO ₂ on horizontal transfer of resistance genes mediated by filamentous phage transduction. Environmental Science: Nano, 2020, 7, 1214-1224.	2.2	26
31	Electricity generation from dissolved organic matter in polluted lake water using a microbial fuel cell (MFC). Biochemical Engineering Journal, 2013, 71, 57-61.	1.8	23
32	A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability. Bioresource Technology, 2017, 241, 743-749.	4.8	23
33	Evaluation of antibacterial activities of silver nanoparticles on culturability and cell viability of Escherichia coli. Science of the Total Environment, 2021, 794, 148765.	3.9	22
34	TiO2 photoexcitation promoted horizontal transfer of resistance genes mediated by phage transduction. Science of the Total Environment, 2021, 760, 144040.	3.9	21
35	Anaerobically photoreductive degradation by CdS nanocrystal: Biofabrication process and bioelectron-driven reaction coupled with Shewanella oneidensis MR-1. Biochemical Engineering Journal, 2020, 154, 107466.	1.8	20
36	Combined intra- and extracellular reduction involved in the anaerobic biodecolorization of cationic azo dye by Shewanella oneidensis MR-1. Chemosphere, 2018, 211, 701-708.	4.2	16

XIANG XIAO

#	Article	IF	CITATIONS
37	Anaerobic decolorization and detoxification of cationic red X-GRL by <i>Shewanella oneidensis</i> MR-1. Environmental Technology (United Kingdom), 2018, 39, 2382-2389.	1.2	14
38	Abscopal Signals Mediated Bio-Effects in Low-Energy Ion Irradiated Medicago truncatula Seeds. Journal of Radiation Research, 2010, 51, 651-656.	0.8	13
39	Impact of Bacillus subtilis JA, a biocontrol strain of fungal plant pathogens, on arbuscular mycorrhiza formation in Zea mays. World Journal of Microbiology and Biotechnology, 2008, 24, 1133-1137.	1.7	12
40	Dynamically controlling the electrode potential of a microbial fuel cell-powered biocathode for sensitive quantification of nitrate. Electrochimica Acta, 2021, 369, 137661.	2.6	12
41	Disintegration of aerobic granules induced by trans-2-decenoic acid. Bioresource Technology, 2013, 128, 823-826.	4.8	10
42	Elucidation of photodegradation of p-chlorophenol in a biophotoelectric reductive degradation system by density functional theory calculations. International Biodeterioration and Biodegradation, 2020, 151, 104969.	1.9	10
43	Anaerobic reduction of high-polarity nitroaromatic compounds by electrochemically active bacteria: Roles of Mtr respiratory pathway, molecular polarity, mediator and membrane permeability. Environmental Pollution, 2021, 268, 115943.	3.7	10
44	Calcium modified basalt fiber bio-carrier for wastewater treatment: Investigation on bacterial community and nitrogen removal enhancement of bio-nest. Bioresource Technology, 2021, 335, 125259.	4.8	9
45	Effects of size and spacing of basalt fiber carrier media on performance, extracellular polymeric substances and microbial community of hybrid biological reactors. Environmental Science: Water Research and Technology, 2019, 5, 1253-1261.	1.2	8
46	Boosting the singlet oxygen production from H ₂ O ₂ activation with highly dispersed Co–N-graphene for pollutant removal. RSC Advances, 2022, 12, 17864-17872.	1.7	8
47	Electrochemistry of newly isolated Gram-positive bacteria Paenibacillus lautus with starch as sole carbon source. Electrochimica Acta, 2022, 411, 140068.	2.6	5
48	Zwitterionic buffer-induced visible light excitation of TiO ₂ for efficient pollutant photodegradation. RSC Advances, 2016, 6, 35449-35454.	1.7	4
49	Enhancement of nitrogen removal in hybrid wastewater treatment system using ferric citrate modified basalt fiber biocarrier. Environmental Science and Pollution Research, 2021, 28, 33480-33490.	2.7	4
50	Re-evaluation of the environmental hazards of nZnO to denitrification: Performance and mechanism. Chemosphere, 2022, 291, 132824.	4.2	4
51	Performance and mechanisms exploration of nano zinc oxide (nZnO) on anaerobic decolorization by Shewanella oneidensis MR-1. Chemosphere, 2022, 305, 135510.	4.2	1