Anita Sil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4304994/publications.pdf

Version: 2024-02-01

430874 552781 2,111 27 18 26 citations h-index g-index papers 34 34 34 2941 citing authors docs citations times ranked all docs

#	Article	lF	Citations
1	Chromosome-Level Genome Assembly of a Human Fungal Pathogen Reveals Synteny among Geographically Distinct Species. MBio, 2022, 13, e0257421.	4.1	7
2	The WOPR family protein Ryp1 is a key regulator of gene expression, development, and virulence in the thermally dimorphic fungal pathogen Coccidioides posadasii. PLoS Pathogens, 2022, 18, e1009832.	4.7	9
3	COVID-19–associated Lung Microvascular Endotheliopathy: A "From the Bench―Perspective. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 961-972.	5 . 6	30
4	Cbp1, a fungal virulence factor under positive selection, forms an effector complex that drives macrophage lysis. PLoS Pathogens, 2022, 18, e1010417.	4.7	4
5	Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell, 2021, 184, 323-333.e9.	28.9	613
6	Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell, 2021, 184, 106-119.e14.	28.9	320
7	Protomer alignment modulates specificity of RNA substrate recognition by Ire1. ELife, 2021, 10, .	6.0	7
8	Recurrent Loss of abaA, a Master Regulator of Asexual Development in Filamentous Fungi, Correlates with Changes in Genomic and Morphological Traits. Genome Biology and Evolution, 2020, 12, 1119-1130.	2.5	16
9	Sensing the heat and the host: Virulence determinants of Histoplasma capsulatum. Virulence, 2019, 10, 793-800.	4.4	8
10	Opposing signaling pathways regulate morphology in response to temperature in the fungal pathogen Histoplasma capsulatum. PLoS Biology, 2019, 17, e3000168.	5 . 6	22
11	Molecular regulation of Histoplasma dimorphism. Current Opinion in Microbiology, 2019, 52, 151-157.	5.1	11
12	The transcription factor CHOP, an effector of the integrated stress response, is required for host sensitivity to the fungal intracellular pathogen Histoplasma capsulatum. PLoS Pathogens, 2017, 13, e1006589.	4.7	26
13	CD103+ Conventional Dendritic Cells Are Critical for TLR7/9-Dependent Host Defense against Histoplasma capsulatum, an Endemic Fungal Pathogen of Humans. PLoS Pathogens, 2016, 12, e1005749.	4.7	32
14	Macrophage cell death and transcriptional response are actively triggered by the fungal virulence factor <scp>C</scp> bp1 during <scp><i>H</i></scp> . <i>capsulatum</i> infection. Molecular Microbiology, 2015, 98, 910-929.	2. 5	34
15	Genome-Wide Reprogramming of Transcript Architecture by Temperature Specifies the Developmental States of the Human Pathogen Histoplasma. PLoS Genetics, 2015, 11, e1005395.	3.5	35
16	MyD88-Dependent Signaling Drives Host Survival and Early Cytokine Production during Histoplasma capsulatum Infection. Infection and Immunity, 2015, 83, 1265-1275.	2.2	18
17	Thermally Dimorphic Human Fungal Pathogensâ€"Polyphyletic Pathogens with a Convergent Pathogenicity Trait. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019794.	6.2	103
18	Comparative Transcriptomics of Infectious Spores from the Fungal Pathogen Histoplasma capsulatum Reveals a Core Set of Transcripts That Specify Infectious and Pathogenic States. Eukaryotic Cell, 2013, 12, 828-852.	3.4	45

#	Article	IF	Citations
19	The 3-Hydroxy-Methylglutaryl Coenzyme A Lyase <i>HCL1</i> Is Required for Macrophage Colonization by Human Fungal Pathogen Histoplasma capsulatum. Infection and Immunity, 2013, 81, 411-420.	2.2	30
20	N-acetylglucosamine (GlcNAc) Triggers a Rapid, Temperature-Responsive Morphogenetic Program in Thermally Dimorphic Fungi. PLoS Genetics, 2013, 9, e1003799.	3.5	58
21	A Temperature-Responsive Network Links Cell Shape and Virulence Traits in a Primary Fungal Pathogen. PLoS Biology, 2013, 11, e1001614.	5.6	115
22	Temperature-induced switch to the pathogenic yeast form of <i>Histoplasma capsulatum</i> requires Ryp1, a conserved transcriptional regulator. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4880-4885.	7.1	179
23	Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen <i>Histoplasma capsulatum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14573-14578.	7.1	108
24	Histoplasma Requires SID1, a Member of an Iron-Regulated Siderophore Gene Cluster, for Host Colonization. PLoS Pathogens, 2008, 4, e1000044.	4.7	131
25	Identifying Phase-specific Genes in the Fungal PathogenHistoplasma capsulatumUsing a Genomic Shotgun Microarray. Molecular Biology of the Cell, 2003, 14, 2314-2326.	2.1	111
26	The protein kinase Pho85 is required for asymmetric accumulation of the Ash1 protein in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 42, 345-353.	2.5	21
27	Future of Functional Genomics of Histoplasma capsulatum. , 0, , 611-625.		1