
Vincent Fridrici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4304903/publications.pdf Version: 2024-02-01

VINCENT FRIDRICI

#	Article	IF	CITATIONS
1	Effects of temperature and addition of zinc carboxylate to grease on the tribological properties of PA66 in contact with carbon steel. Tribology International, 2021, 153, 106578.	5.9	8
2	Soft EHL-Based Friction Mechanism of Unreinforced and GF-Reinforced PA66 in Contact with Steel Under PAO8 Oil Lubrication. Tribology Letters, 2021, 69, 1.	2.6	2
3	Comparison of the tribological properties of carbon/glass fiber reinforced PA66-based composites in contact with steel, with and without grease lubrication. Wear, 2021, 477, 203899.	3.1	16
4	Tribological properties of Ni–B–TiO2 sol composite coating elaborated by sol-enhanced process: abrasive wear and impact wear. Journal of Materials Research and Technology, 2021, 13, 857-871.	5.8	9
5	A study of the wear damage of a PTFE coating: The effects of temperature and environment on its mechanical and tribological properties. Wear, 2021, 480-481, 203946.	3.1	9
6	Reactive extrusion mechanism, mechanical and tribological behavior of fiber reinforced polyamide 66 with added carbodiimide. Materials and Design, 2020, 188, 108447.	7.0	15
7	Effects of glass fiber properties and polymer molecular mass on the mechanical and tribological properties of a polyamide-66-based composite in contact with carbon steel under grease lubrication. Wear, 2020, 462-463, 203500.	3.1	11
8	Some Hard or Soft Coatings to Protect the Pristine Biometallic Substrates under Fretting-Corrosion Solicitations: What Should Be the Best Solution?. Lubricants, 2020, 8, 55.	2.9	3
9	Tribological behavior of glass fiber reinforced-PA66 in contact with carbon steel under high contact pressure, sliding and grease lubricated conditions. Wear, 2020, 456-457, 203383.	3.1	13
10	Investigation on mechanical properties of tribofilm formed on Ti–6Al–4V surface sliding against a DLC coating by nano-indentation and micro-pillar compression techniques. Wear, 2019, 432-433, 202954.	3.1	10
11	Influence of Deposition Positions on Fretting Behaviors of DLC Coating on Ti-6Al-4V. Tribology Transactions, 2019, 62, 1155-1172.	2.0	7
12	Low-friction study between diamond-like carbon coating and Ti 6Al 4V under fretting conditions. Tribology International, 2019, 135, 368-388.	5.9	22
13	Effects of temperature increase during surgical drilling in acrylic resin. Technology and Health Care, 2019, 28, 1-12.	1.2	0
14	Influence of diamond-like carbon coatings and roughness on fretting behaviors of Ti–6Al–4V for neck adapter–femoral stem contact. Wear, 2018, 406-407, 53-67.	3.1	18
15	Influence of Calf Serum on Fretting Behaviors of Ti–6Al–4V and Diamond-Like Carbon Coating for Neck Adapter–Femoral Stem Contact. Tribology Letters, 2018, 66, 1.	2.6	8
16	Wear Behavior of Martensitic Stainless Steel in Rolling-Sliding Contact for Planetary Roller Screw Mechanism: Study of the WC/C Solution. Tribology Online, 2016, 11, 209-217.	0.9	25
17	The effect of porous substrate on the tribological performance of a MoS 2 based coating in fretting by statistical analysis. Wear, 2015, 330-331, 122-135.	3.1	2
18	Friction of 316L stainless steel on soft-tissue-like poly(vinyl alcohol) hydrogel in physiological liquid. Tribology International, 2015, 82, 407-414.	5.9	13

VINCENT FRIDRICI

#	Article	IF	CITATIONS
19	Friction Properties of Medical Metallic Alloys on Soft Tissue–Mimicking Poly(Vinyl Alcohol) Hydrogel Biomodel. Tribology Letters, 2013, 51, 311-321.	2.6	13
20	Survival and factorial analysis of durability and friction coefficient of a solid lubricant under different working conditions. Wear, 2013, 302, 998-1009.	3.1	3
21	Bioengineering Materials and Conditions for Obtaining Low Friction with PVA Hydrogels. Tribology Online, 2013, 8, 140-152.	0.9	13
22	Evaluating and predicting durability of bonded solid lubricant coatings under fretting conditions. Tribology International, 2011, 44, 1577-1582.	5.9	6
23	A systematic approach for the selection of tribological coatings. Wear, 2011, 271, 2132-2143.	3.1	22
24	Friction Properties of Poly(vinyl alcohol) Hydrogel: Effects of Degree of Polymerization and Saponification Value. Tribology Letters, 2011, 42, 241-251.	2.6	22
25	Friction properties of PVA-H/steel ball contact under water lubrication conditions. Tribology International, 2011, 44, 757-763.	5.9	21
26	Relationships between the fretting wear behavior and the ball cratering resistance of solid lubricant coatings. Surface and Coatings Technology, 2010, 204, 1259-1269.	4.8	10
27	Selecting solid lubricant coatings under fretting conditions. Wear, 2010, 268, 816-827.	3.1	12
28	Effect of contact configuration on the durability and friction coefficient of pressureâ€sprayed MoS ₂ coatings under fretting conditions. Lubrication Science, 2009, 21, 193-209.	2.1	4
29	Surface topography and tribology of cast iron in boundary lubrication. Tribology International, 2009, 42, 1011-1018.	5.9	38
30	Yield, creep, and wear properties of ultra high molecular weight polyethylene processed by high velocity compaction. Journal of Applied Polymer Science, 2008, 110, 2579-2585.	2.6	14
31	Influence of Material Nature and Surface Texturing on Wear of Heavy-Duty Diesel Engine Cylinder Liners. Tribology Transactions, 2008, 52, 121-126.	2.0	9
32	Wear and friction characterization of materials for hip prosthesis. Wear, 2007, 263, 1066-1071.	3.1	37
33	Influence of chemical composition and microstructure of gray cast iron on wear of heavy duty diesel engines cylinder liners. Wear, 2007, 263, 1158-1164.	3.1	40
34	Sliding wear transition for the CW614 brass alloy. Tribology International, 2006, 39, 290-296.	5.9	39
35	Palliatives in fretting: A dynamical approach. Tribology International, 2006, 39, 1005-1015.	5.9	49
36	Prediction of cracking in Ti–6Al–4V alloy under fretting-wear: use of the SWT criterion. Wear, 2005, 259, 300-308.	3.1	40

3

#	Article	lF	CITATIONS
37	Fretting wear behavior of a Cu–Ni–In plasma coating. Surface and Coatings Technology, 2003, 163-164, 429-434.	4.8	58
38	Impact of contact size and geometry on the lifetime of a solid lubricant. Wear, 2003, 255, 875-882.	3.1	38
39	X-VIEW: a high-resolution real-time solid state x-ray detection system. , 2003, 4784, 227.		1
40	Effect of shot peening on the fretting wear of Ti–6Al–4V. Wear, 2001, 250, 642-649.	3.1	116