Xiaolong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/430481/publications.pdf

Version: 2024-02-01

29	1,372	³⁹⁴⁴²¹	477307
papers	citations	h-index	g-index
30	30	30	2474
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Mechanistic insights into the subversion of the linear ubiquitin chain assembly complex by the E3 ligase IpaH1.4 of $\langle i \rangle$ Shigella flexneri $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116776119.	7.1	8
2	Construction of dPCR and qPCR integrated system based on commercially available low-cost hardware. Analyst, The, 2022, 147, 3494-3503.	3.5	2
3	Phosphorylation regulates the binding of autophagy receptors to FIP200 Claw domain for selective autophagy initiation. Nature Communications, 2021, 12, 1570.	12.8	45
4	Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chemical Biology, 2021, 28, 855-865.e9.	5.2	67
5	Structural and biochemical advances on the recruitment of the autophagy-initiating ULK and TBK1 complexes by autophagy receptor NDP52. Science Advances, 2021, 7, .	10.3	20
6	The Most Recent Advances in the Application of Nano-Structures/Nano-Materials for Single-Cell Sampling. Frontiers in Chemistry, 2020, 8, 718.	3.6	5
7	Mechanistic Insights into the Interactions of Ras Subfamily <scp>GTPases</scp> with the <scp>SPN</scp> Domain of Autismâ€associated <scp>SHANK3</scp> ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1635-1641.	4.9	2
8	Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome–lysosome fusion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21391-21402.	7.1	23
9	Improve the energy efficiency: Effects of additives on longtime zinc electrowinning. Hydrometallurgy, 2020, 193, 105326.	4.3	10
10	Does the Nitrification-Suppressed BOD5 Test Make Sense?. Environmental Science & Environmental Science	10.0	1
11	An investigation of solid-state nanopores on label-free metal-ion signalling <i>via</i> the transition of RNA-cleavage DNAzyme and the hybridization chain reaction. Nanoscale, 2019, 11, 10339-10347.	5.6	27
12	Short-chain oligonucleotide detection by glass nanopore using targeting-induced DNA tetrahedron deformation as signal amplifier. Analytica Chimica Acta, 2019, 1063, 57-63.	5.4	12
13	Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Research, 2018, 11, 3854-3863.	10.4	35
14	Adaption of a Solid-State Nanopore to Homogeneous DNA Organization Verification and Label-Free Molecular Analysis without Covalent Modification. Analytical Chemistry, 2018, 90, 814-820.	6.5	36
15	Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells. Scientific Reports, 2017, 7, 1759.	3.3	56
16	Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation. ACS Sensors, 2017, 2, 1452-1457.	7.8	31
17	Shell Thickness Engineering Significantly Boosts the Photocatalytic H ₂ Evolution Efficiency of CdS/CdSe Core/Shell Quantum Dots. ACS Applied Materials & Engineering Significantly 9, 35712-35720.	8.0	48
18	Long-Range Plasmon Field and Plasmoelectric Effect on Catalysis Revealed by Shell-Thickness-Tunable Pinhole-Free Au@SiO ₂ Core–Shell Nanoparticles: A Case Study of ⟨i⟩p⟨/i⟩-Nitrophenol Reduction. ACS Catalysis, 2017, 7, 5391-5398.	11.2	73

#	Article	IF	CITATIONS
19	A fluorescent ELISA based on the enzyme-triggered synthesis of poly(thymine)-templated copper nanoparticles. Nanoscale, 2016, 8, 16846-16850.	5 . 6	41
20	Facile One-Step Photochemical Fabrication and Characterization of an Ultrathin Gold-Decorated Single Glass Nanopipette. Analytical Chemistry, 2015, 87, 3216-3221.	6.5	48
21	Single glass nanopore-based regenerable sensing platforms with a non-immobilized polyglutamic acid probe for selective detection of cupric ions. Analytica Chimica Acta, 2015, 889, 98-105.	5.4	28
22	Self-standing non-noble metal (Ni–Fe) oxide nanotube array anode catalysts with synergistic reactivity for high-performance water oxidation. Journal of Materials Chemistry A, 2015, 3, 7179-7186.	10.3	96
23	The facile surface chemical modification of a single glass nanopore and its use in the nonenzymatic detection of uric acid. Chemical Communications, 2015, 51, 1914-1917.	4.1	25
24	A Highâ€Performance Binary Ni–Co Hydroxideâ€based Water Oxidation Electrode with Threeâ€Dimensional Coaxial Nanotube Array Structure. Advanced Functional Materials, 2014, 24, 4698-4705.	14.9	348
25	Efficient visible light-driven H ₂ production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel–sulfur complex. Nanoscale, 2014, 6, 13470-13475.	5.6	41
26	Wet-Chemical Enzymatic Preparation and Characterization of Ultrathin Gold-Decorated Single Glass Nanopore. Analytical Chemistry, 2014, 86, 4815-4821.	6.5	35
27	Enzymatic Plasmonic Engineering of Ag/Au Bimetallic Nanoshells and Their Use for Sensitive Optical Glucose Sensing. Advanced Materials, 2012, 24, 1736-1740.	21.0	128
28	A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks. Energy and Environmental Science, 2011, 4, 1358.	30.8	70
29	A Simple and Inexpensive Method for Fabrication of Ultramicroelectrode Array and Its Application for the Detection of Dissolved Oxygen. Electroanalysis, 2008, 20, 797-802.	2.9	11