Xiaolong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/430481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Highâ€Performance Binary Ni–Co Hydroxideâ€based Water Oxidation Electrode with Threeâ€Dimensional Coaxial Nanotube Array Structure. Advanced Functional Materials, 2014, 24, 4698-4705.	14.9	348
2	Enzymatic Plasmonic Engineering of Ag/Au Bimetallic Nanoshells and Their Use for Sensitive Optical Glucose Sensing. Advanced Materials, 2012, 24, 1736-1740.	21.0	128
3	Self-standing non-noble metal (Ni–Fe) oxide nanotube array anode catalysts with synergistic reactivity for high-performance water oxidation. Journal of Materials Chemistry A, 2015, 3, 7179-7186.	10.3	96
4	Long-Range Plasmon Field and Plasmoelectric Effect on Catalysis Revealed by Shell-Thickness-Tunable Pinhole-Free Au@SiO ₂ Core–Shell Nanoparticles: A Case Study of <i>p</i> -Nitrophenol Reduction. ACS Catalysis, 2017, 7, 5391-5398.	11.2	73
5	A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks. Energy and Environmental Science, 2011, 4, 1358.	30.8	70
6	Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chemical Biology, 2021, 28, 855-865.e9.	5.2	67
7	Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells. Scientific Reports, 2017, 7, 1759.	3.3	56
8	Facile One-Step Photochemical Fabrication and Characterization of an Ultrathin Gold-Decorated Single Glass Nanopipette. Analytical Chemistry, 2015, 87, 3216-3221.	6.5	48
9	Shell Thickness Engineering Significantly Boosts the Photocatalytic H ₂ Evolution Efficiency of CdS/CdSe Core/Shell Quantum Dots. ACS Applied Materials & Interfaces, 2017, 9, 35712-35720.	8.0	48
10	Phosphorylation regulates the binding of autophagy receptors to FIP200 Claw domain for selective autophagy initiation. Nature Communications, 2021, 12, 1570.	12.8	45
11	Efficient visible light-driven H ₂ production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel–sulfur complex. Nanoscale, 2014, 6, 13470-13475.	5.6	41
12	A fluorescent ELISA based on the enzyme-triggered synthesis of poly(thymine)-templated copper nanoparticles. Nanoscale, 2016, 8, 16846-16850.	5.6	41
13	Adaption of a Solid-State Nanopore to Homogeneous DNA Organization Verification and Label-Free Molecular Analysis without Covalent Modification. Analytical Chemistry, 2018, 90, 814-820.	6.5	36
14	Wet-Chemical Enzymatic Preparation and Characterization of Ultrathin Gold-Decorated Single Glass Nanopore. Analytical Chemistry, 2014, 86, 4815-4821.	6.5	35
15	Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Research, 2018, 11, 3854-3863.	10.4	35
16	Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation. ACS Sensors, 2017, 2, 1452-1457.	7.8	31
17	Single glass nanopore-based regenerable sensing platforms with a non-immobilized polyglutamic acid probe for selective detection of cupric ions. Analytica Chimica Acta, 2015, 889, 98-105.	5.4	28
18	An investigation of solid-state nanopores on label-free metal-ion signalling <i>via</i> the transition of RNA-cleavage DNAzyme and the hybridization chain reaction. Nanoscale, 2019, 11, 10339-10347.	5.6	27

XIAOLONG XU

#	Article	IF	CITATIONS
19	The facile surface chemical modification of a single glass nanopore and its use in the nonenzymatic detection of uric acid. Chemical Communications, 2015, 51, 1914-1917.	4.1	25
20	Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome–lysosome fusion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21391-21402.	7.1	23
21	Structural and biochemical advances on the recruitment of the autophagy-initiating ULK and TBK1 complexes by autophagy receptor NDP52. Science Advances, 2021, 7, .	10.3	20
22	Short-chain oligonucleotide detection by glass nanopore using targeting-induced DNA tetrahedron deformation as signal amplifier. Analytica Chimica Acta, 2019, 1063, 57-63.	5.4	12
23	A Simple and Inexpensive Method for Fabrication of Ultramicroelectrode Array and Its Application for the Detection of Dissolved Oxygen. Electroanalysis, 2008, 20, 797-802.	2.9	11
24	Improve the energy efficiency: Effects of additives on longtime zinc electrowinning. Hydrometallurgy, 2020, 193, 105326.	4.3	10
25	Mechanistic insights into the subversion of the linear ubiquitin chain assembly complex by the E3 ligase IpaH1.4 of <i>Shigella flexneri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116776119.	7.1	8
26	The Most Recent Advances in the Application of Nano-Structures/Nano-Materials for Single-Cell Sampling. Frontiers in Chemistry, 2020, 8, 718.	3.6	5
27	Mechanistic Insights into the Interactions of Ras Subfamily <scp>GTPases</scp> with the <scp>SPN</scp> Domain of Autismâ€associated <scp>SHANK3</scp> ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1635-1641.	4.9	2
28	Construction of dPCR and qPCR integrated system based on commercially available low-cost hardware. Analyst, The, 2022, 147, 3494-3503.	3.5	2
29	Does the Nitrification-Suppressed BOD5 Test Make Sense?. Environmental Science & Technology, 2020. 54. 5323-5324.	10.0	1