João L N Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/43043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of integrated food and bioenergy cropping systems on crop yields, soil health, and biomass quality: The EU and Brazilian experience. GCB Bioenergy, 2022, 14, 522-538.	5.6	6
2	Assessment of Soil Physical Quality and Water Flow Regulation under Straw Removal Management in Sugarcane Production Fields. Sustainability, 2022, 14, 841.	3.2	1
3	Soil tillage and machinery traffic influence soil water availability and air fluxes in sugarcane fields. Soil and Tillage Research, 2022, 223, 105459.	5.6	8
4	Soil structure changes induced by tillage and reduction of machinery traffic on sugarcane – A diversity of assessment scales. Soil and Tillage Research, 2022, 223, 105469.	5.6	10
5	Long term sugarcane straw removal affects soil phosphorus dynamics. Soil and Tillage Research, 2021, 208, 104898.	5.6	13
6	Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy. Land, 2021, 10, 72.	2.9	43
7	Untrafficked furrowed seedbed sustains soil physical quality in sugarcane mechanized fields. European Journal of Soil Science, 2021, 72, 2150-2164.	3.9	9
8	Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products, 2021, 163, 113315.	5.2	33
9	Multilocation changes in soil carbon stocks from sugarcane straw removal for bioenergy production in Brazil. GCB Bioenergy, 2021, 13, 1099-1111.	5.6	9
10	How do nitrogen fertilization and cover crop influence soil C-N stocks and subsequent yields of sugarcane?. Soil and Tillage Research, 2021, 211, 104999.	5.6	5
11	Machinery traffic in sugarcane straw removal operation: Stress transmitted and soil compaction. Soil and Tillage Research, 2021, 213, 105122.	5.6	12
12	Implications of regional N2O–N emission factors on sugarcane ethanol emissions and granted decarbonization certificates. Renewable and Sustainable Energy Reviews, 2021, 149, 111423.	16.4	16
13	Planting legume cover crop as a strategy to replace synthetic N fertilizer applied for sugarcane production. Industrial Crops and Products, 2020, 156, 112853.	5.2	12
14	Shifting abundances of communities associated with nitrogen cycling in soils promoted by sugarcane harvest systems. Letters in Applied Microbiology, 2020, 71, 444-450.	2.2	2
15	Implications of Sugarcane Straw Removal for Soil Greenhouse Gas Emissions in São Paulo State, Brazil. Bioenergy Research, 2019, 12, 843-857.	3.9	16
16	Sugarcane Straw Removal: Implications to Soil Fertility and Fertilizer Demand in Brazil. Bioenergy Research, 2019, 12, 888-900.	3.9	40
17	Multilocation Straw Removal Effects on Sugarcane Yield in South-Central Brazil. Bioenergy Research, 2019, 12, 813-829.	3.9	37
18	Can reduced tillage sustain sugarcane yield and soil carbon if straw is removed?. Bioenergy Research, 2019, 12, 764-777.	3.9	41

JOãO L N CARVALHO

#	Article	IF	CITATIONS
19	Changes in Soil Pest Populations Caused by Sugarcane Straw Removal in Brazil. Bioenergy Research, 2019, 12, 878-887.	3.9	10
20	Straw Removal Affects Soil Physical Quality and Sugarcane Yield in Brazil. Bioenergy Research, 2019, 12, 789-800.	3.9	37
21	Soil Macrofauna Responses to Sugarcane Straw Removal for Bioenergy Production. Bioenergy Research, 2019, 12, 944-957.	3.9	19
22	Sustainable Sugarcane Straw Special Issue: Considerations for Brazilian Bioenergy Production. Bioenergy Research, 2019, 12, 746-748.	3.9	12
23	Soil physical quality associated with tillage practices during sugarcane planting in south-central Brazil. Soil and Tillage Research, 2019, 195, 104383.	5.6	37
24	Straw Removal Effects on Soil Water Dynamics, Soil Temperature, and Sugarcane Yield in South-Central Brazil. Bioenergy Research, 2019, 12, 749-763.	3.9	32
25	Legume nitrogen credits for sugarcane production: implications for soil N availability and ratoon yield. Nutrient Cycling in Agroecosystems, 2019, 113, 307-322.	2.2	14
26	Soil tillage and cover crop on soil CO ₂ emissions from sugarcane fields. Soil Use and Management, 2019, 35, 273-282.	4.9	19
27	Can alternative N-fertilization methods influence GHG emissions and biomass production in sugarcane fields?. Biomass and Bioenergy, 2019, 120, 21-27.	5.7	26
28	Biomass Production and Nutrient Removal of Energy Cane Genotypes in Northeastern Brazil. Crop Science, 2019, 59, 379-391.	1.8	9
29	Sustainability of sugarcane production in Brazil. A review. Agronomy for Sustainable Development, 2018, 38, 1.	5.3	251
30	Soil texture affects root penetration in Oxisols under sugarcane in Brazil. Geoderma Regional, 2018, 13, 15-25.	2.1	42
31	Crop residue removal and nitrification inhibitor application as strategies to mitigate N2O emissions in sugarcane fields. Biomass and Bioenergy, 2018, 119, 206-216.	5.7	29
32	Classification of soil respiration in areas of sugarcane renewal using decision tree. Scientia Agricola, 2018, 75, 216-224.	1.2	2
33	Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, 2018, 328, 79-90.	5.1	52
34	The Arrangement and Spacing of Sugarcane Planting Influence Root Distribution and Crop Yield. Bioenergy Research, 2018, 11, 291-304.	3.9	25
35	Soil physical quality response to sugarcane straw removal in Brazil: A multi-approach assessment. Soil and Tillage Research, 2018, 184, 301-309.	5.6	66
36	Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field. PLoS ONE, 2018, 13, e0193537.	2.5	9

João L N Carvalho

#	Article	IF	CITATIONS
37	Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy, 2017, 9, 1181-1195.	5.6	164
38	Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane () Tj ETQq0 0 0 rgBT 2017, 240, 54-65.	Överlock	₹ 10 Tf 50 707 38
39	Use of the Decision Tree Technique to Estimate Sugarcane Productivity Under Edaphoclimatic Conditions. Sugar Tech, 2017, 19, 662-668.	1.8	20
40	Methane emissions from sugarcane vinasse storage and transportation systems: Comparison between open channels and tanks. Atmospheric Environment, 2017, 159, 135-146.	4.1	20
41	Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels, Bioproducts and Biorefining, 2017, 11, 488-504.	3.7	126
42	Contribution of above―and belowground bioenergy crop residues to soil carbon. GCB Bioenergy, 2017, 9, 1333-1343.	5.6	89
43	Environmental and economic impacts of different sugarcane production systems in the ethanol biorefinery. Biofuels, Bioproducts and Biorefining, 2016, 10, 89-106.	3.7	55
44	The Agricultural Production Model. Green Energy and Technology, 2016, , 13-51.	0.6	5
45	Greenhouse gas emissions from sugarcane vinasse transportation by open channel: a case study in Brazil. Journal of Cleaner Production, 2015, 94, 102-107.	9.3	25
46	Crop-pasture rotation: A strategy to reduce soil greenhouse gas emissions in the Brazilian Cerrado. Agriculture, Ecosystems and Environment, 2014, 183, 167-175.	5.3	83
47	Soil greenhouse gas fluxes from vinasse application in Brazilian sugarcane areas. Geoderma, 2013, 200-201, 77-84.	5.1	89
48	Contrasting approaches for estimating soil carbon changes in Amazon and Cerrado biomes. Soil and Tillage Research, 2013, 133, 75-84.	5.6	29
49	Technical and economic assessment of trash recovery in the sugarcane bioenergy production system. Scientia Agricola, 2013, 70, 353-360.	1.2	53
50	Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view. Scientia Agricola, 2013, 70, 361-368.	1.2	21
51	Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Scientia Agricola, 2013, 70, 305-312.	1.2	82
52	Carbon stock and humification index of organic matter affected by sugarcane straw and soil management. Scientia Agricola, 2013, 70, 321-326.	1.2	56
53	How much sugarcane trash should be left on the soil?. Scientia Agricola, 2013, 70, 1-1.	1.2	20
54	Input of sugarcane post-harvest residues into the soil. Scientia Agricola, 2013, 70, 336-344.	1.2	49

JOãO L N CARVALHO

#	Article	IF	CITATIONS
55	Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil and Tillage Research, 2010, 110, 175-186.	5.6	125
56	Greenhouse gas mitigation options in Brazil for land-use change, livestock and agriculture. Scientia Agricola, 2010, 67, 102-116.	1.2	55
57	Potencial de sequestro de carbono em diferentes biomas do Brasil. Revista Brasileira De Ciencia Do Solo, 2010, 34, 277-290.	1.3	77
58	Agricultural expansion in the Brazilian state of Mato Grosso; implications for C stocks and greenhouse gas emissions. Environmental Science and Engineering, 2010, , 447-460.	0.2	2
59	Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon. Soil and Tillage Research, 2009, 103, 342-349.	5.6	102
60	Conversion of cerrado into agricultural land in the south-western Amazon: carbon stocks and soil fertility. Scientia Agricola, 2009, 66, 233-241.	1.2	25
61	Changes of chemical properties in an oxisol after clearing of native Cerrado vegetation for agricultural use in Vilhena, Rondonia State, Brazil. Soil and Tillage Research, 2007, 96, 95-102.	5.6	26
62	Movimentação de nitrato e amônio em colunas de solo. Ciencia E Agrotecnologia, 2004, 28, 537-541.	1.5	12