## Hidetoshi Iida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4304247/publications.pdf Version: 2024-02-01



ΗΙΠΕΤΟSΗΙ ΙΙΠΛ

| #  | Article                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proceedings of the United States of America, 2007, 104, 3639-3644.                                                                                                                               | 7.1  | 352       |
| 2  | Yeast heat-shock protein of Mr 48,000 is an isoprotein of enolase. Nature, 1985, 315, 688-690.                                                                                                                                                                                           | 27.8 | 209       |
| 3  | Molecular Identification of a Eukaryotic, Stretch-Activated Nonselective Cation Channel. Science, 1999, 285, 882-886.                                                                                                                                                                    | 12.6 | 205       |
| 4  | MCA1 and MCA2 That Mediate Ca2+ Uptake Have Distinct and Overlapping Roles in Arabidopsis. Plant<br>Physiology, 2010, 152, 1284-1296.                                                                                                                                                    | 4.8  | 169       |
| 5  | Plant mechanosensing and Ca2+ transport. Trends in Plant Science, 2013, 18, 227-233.                                                                                                                                                                                                     | 8.8  | 143       |
| 6  | Pressure-Induced Differential Regulation of the Two Tryptophan Permeases Tat1 and Tat2 by Ubiquitin<br>Ligase Rsp5 and Its Binding Proteins, Bul1 and Bul2. Molecular and Cellular Biology, 2003, 23, 7566-7584.                                                                         | 2.3  | 107       |
| 7  | Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+influx and modulates generation of reactive oxygen species in cultured rice cells. BMC Plant Biology, 2012, 12, 11.                                                                           | 3.6  | 107       |
| 8  | Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+<br>increase and cold tolerance in Arabidopsis. Scientific Reports, 2018, 8, 550.                                                                                                              | 3.3  | 97        |
| 9  | Heat shock induction of intranuclear actin rods in cultured mammalian cells. Experimental Cell<br>Research, 1986, 165, 207-215.                                                                                                                                                          | 2.6  | 92        |
| 10 | Mechanoreception in motile flagella of Chlamydomonas. Nature Cell Biology, 2011, 13, 630-632.                                                                                                                                                                                            | 10.3 | 91        |
| 11 | Cooperation of Calcineurin and Vacuolar H+-ATPase in Intracellular Ca2+Homeostasis of Yeast Cells.<br>Journal of Biological Chemistry, 1995, 270, 10113-10119.                                                                                                                           | 3.4  | 82        |
| 12 | Organellar mechanosensitive channels in fission yeast regulate the hypo-osmotic shock response.<br>Nature Communications, 2012, 3, 1020.                                                                                                                                                 | 12.8 | 79        |
| 13 | Intracellular free calcium level and its response to cAMP stimulation in developingDictyosteliumcells<br>transformed with jellyfish apoaequorin cDNA. FEBS Letters, 1994, 337, 43-47.                                                                                                    | 2.8  | 63        |
| 14 | Expression of Arabidopsis MCA1 enhanced mechanosensitive channel activity in the <i>Xenopus<br/>laevis</i> oocyte plasma membrane. Plant Signaling and Behavior, 2012, 7, 1022-1026.                                                                                                     | 2.4  | 58        |
| 15 | Involvement of the putative Ca2+-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca2+<br>uptake, Ca2+-dependent cell proliferation and mechanical stress-induced gene expression in tobacco<br>(Nicotiana tabacum) BY-2 cells. Journal of Plant Research, 2012, 125, 555-568. | 2.4  | 54        |
| 16 | The MID2 gene encodes a putative integral membrane protein with a Ca2+-binding domain and shows mating pheromone-stimulated expression in Saccharomyces cerevisiae. Gene, 1994, 151, 203-208.                                                                                            | 2.2  | 52        |
| 17 | A heat shock-resistant variant of Chinese hamster cell line constitutively expressing heat shock protein of Mr 90,000 at high level Cell Structure and Function, 1986, 11, 65-73.                                                                                                        | 1.1  | 48        |
| 18 | A Mechanosensitive Anion Channel in Arabidopsis thaliana Mesophyll Cells. Plant and Cell Physiology, 2004, 45, 1704-1708.                                                                                                                                                                | 3.1  | 45        |

Hidetoshi lida

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Functional Analysis of a Rice Putative Voltage-Dependent Ca2+ Channel, OsTPC1, Expressed in Yeast<br>Cells Lacking its Homologous Gene CCH1. Plant and Cell Physiology, 2004, 45, 496-500.                              | 3.1  | 45        |
| 20 | Ion-channel blocker sensitivity of voltage-gated calcium-channel homologue Cch1 in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2008, 154, 3775-3781.                                                       | 1.8  | 45        |
| 21 | Subcellular localization and oligomeric structure of the yeast putative stretch-activated Ca2+<br>channel component Mid1. Experimental Cell Research, 2004, 293, 185-195.                                               | 2.6  | 44        |
| 22 | A DBL-homologous region of the yeast CLS4CDC24 gene product is important for Ca2+-modulated bud assembly. Biochemical and Biophysical Research Communications, 1991, 181, 604-610.                                      | 2.1  | 37        |
| 23 | Determination of Structural Regions Important for Ca2+ Uptake Activity in Arabidopsis MCA1 and MCA2 Expressed in Yeast. Plant and Cell Physiology, 2011, 52, 1915-1930.                                                 | 3.1  | 37        |
| 24 | MCAs in Arabidopsis are Ca2+-permeable mechanosensitive channels inherently sensitive to membrane tension. Nature Communications, 2021, 12, 6074.                                                                       | 12.8 | 37        |
| 25 | Electrophysiological Characterization of the Mechanosensitive Channel MscCG in Corynebacterium glutamicum. Biophysical Journal, 2013, 105, 1366-1375.                                                                   | 0.5  | 35        |
| 26 | Regulation of polar surface structures in Caulobacter crescentus: Pleiotropic mutations affect the coordinate morphogenesis of flagella, pili and phage receptors. Molecular Genetics and Genomics, 1976, 149, 167-173. | 2.4  | 34        |
| 27 | Molecular cloning in yeast by in vivo homologous recombination of the yeast putative α1 subunit of the voltage-gated calcium channel. FEBS Letters, 2004, 576, 291-296.                                                 | 2.8  | 32        |
| 28 | Transmembrane Topologies of Ca2+-permeable Mechanosensitive Channels MCA1 and MCA2 in Arabidopsis thaliana. Journal of Biological Chemistry, 2015, 290, 30901-30909.                                                    | 3.4  | 31        |
| 29 | Structural Characterization of the Mechanosensitive Channel Candidate MCA2 from Arabidopsis thaliana. PLoS ONE, 2014, 9, e87724.                                                                                        | 2.5  | 30        |
| 30 | A Gain-of-Function Mutation in Gating of Corynebacterium glutamicum NCgl1221 Causes Constitutive<br>Glutamate Secretion. Applied and Environmental Microbiology, 2012, 78, 5432-5434.                                   | 3.1  | 26        |
| 31 | Mugifumi, a beneficial farm work of adding mechanical stress by treading to wheat and barley seedlings. Frontiers in Plant Science, 2014, 5, 453.                                                                       | 3.6  | 25        |
| 32 | Molecular Dissection of the Hydrophobic Segments H3 and H4 of the Yeast Ca2+ Channel Component<br>Mid1. Journal of Biological Chemistry, 2003, 278, 9647-9654.                                                          | 3.4  | 24        |
| 33 | MCA1 and MCA2 Are Involved in the Response to Hypergravity in Arabidopsis Hypocotyls. Plants, 2020, 9,<br>590.                                                                                                          | 3.5  | 23        |
| 34 | Calmodulin-dependent protein kinase II and calmodulin are required for induced thermotolerance in<br>Saccharomyces cerevisiae. Current Genetics, 1995, 27, 190-193.                                                     | 1.7  | 20        |
| 35 | Essential Hydrophilic Carboxyl-terminal Regions Including Cysteine Residues of the Yeast<br>Stretch-activated Calcium-permeable Channel Mid1. Journal of Biological Chemistry, 2002, 277,<br>11645-11652.               | 3.4  | 19        |
| 36 | Essential, Completely Conserved Clycine Residue in the Domain III S2–S3 Linker of Voltage-gated Calcium Channel α1 Subunits in Yeast and Mammals. Journal of Biological Chemistry, 2007, 282, 25659-25667.              | 3.4  | 18        |

Hidetoshi lida

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Evidence for the plasma membrane localization of a putative voltage-dependent Ca2+ channel, OsTPC1,<br>in rice. Plant Biotechnology, 2005, 22, 235-239.                                                                                                     | 1.0 | 18        |
| 38 | Hyperactive and hypoactive mutations in Cch1, a yeast homologue of the voltage-gated calcium-channel pore-forming subunit. Microbiology (United Kingdom), 2013, 159, 970-979.                                                                               | 1.8 | 17        |
| 39 | The root growth reduction in response to mechanical stress involves ethylene-mediated microtubule reorganization and transmembrane receptor-mediated signal transduction in Arabidopsis. Plant Cell Reports, 2021, 40, 575-582.                             | 5.6 | 17        |
| 40 | Salicylic Acid Induces a Cytosolic Ca2+Elevation in Yeast. Bioscience, Biotechnology and Biochemistry, 1998, 62, 986-989.                                                                                                                                   | 1.3 | 16        |
| 41 | Identification of functional domains of Mid1, a stretch-activated channel component, necessary for<br>localization to the plasma membrane and Ca2+ permeation. Experimental Cell Research, 2005, 311, 84-95.                                                | 2.6 | 16        |
| 42 | Galactose-dependent expression of the recombinant Ca2+-binding photoprotein aequorin in yeast.<br>Biochemical and Biophysical Research Communications, 1991, 174, 115-122.                                                                                  | 2.1 | 15        |
| 43 | yam8+, a Schizosaccharomyces pombe Gene, Is a Potential Homologue of the Saccharomyces cerevisiae<br>MID1 Gene Encoding a Stretch- Activated Ca2+-Permeable Channel. Biochemical and Biophysical<br>Research Communications, 2000, 269, 265-269.            | 2.1 | 14        |
| 44 | Phenylethylamine Induces an Increase in Cytosolic Ca2+in Yeast. Bioscience, Biotechnology and<br>Biochemistry, 2002, 66, 1069-1074.                                                                                                                         | 1.3 | 14        |
| 45 | The ER-associated protease Ste24 prevents N-terminal signal peptide-independent translocation into<br>the endoplasmic reticulum in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2020, 295,<br>10406-10419.                                    | 3.4 | 14        |
| 46 | Ca+2 Signal is Generated Only Once in the Mating Pheromone Response Pathway in Saccharomyces cerevisiae Cell Structure and Function, 2000, 25, 125-131.                                                                                                     | 1.1 | 13        |
| 47 | Roles of a putative mechanosensitive plasma membrane Ca <sup>2+</sup> -permeable channel OsMCA1 in generation of reactive oxygen species and hypo-osmotic signaling in rice. Plant Signaling and Behavior, 2012, 7, 796-798.                                | 2.4 | 13        |
| 48 | Mechanosensitive channels Msy1 and Msy2 are required for maintaining organelle integrity upon hypoosmotic shock inSchizosaccharomyces pombe. FEMS Yeast Research, 2014, 14, 992-994.                                                                        | 2.3 | 13        |
| 49 | The gravistimulation-induced very slow Ca2+ increase in Arabidopsis seedlings requires MCA1, a<br>Ca2+-permeable mechanosensitive channel. Scientific Reports, 2021, 11, 227.                                                                               | 3.3 | 12        |
| 50 | Organellar mechanosensitive channels involved in hypo-osmoregulation in fission yeast. Cell<br>Calcium, 2014, 56, 467-471.                                                                                                                                  | 2.4 | 10        |
| 51 | Mix and match: Patchwork domain evolution of the land plant-specific Ca2+-permeable mechanosensitive channel MCA. PLoS ONE, 2021, 16, e0249735.                                                                                                             | 2.5 | 10        |
| 52 | Post-translational processing and membrane translocation of the yeast regulatory Mid1 subunit of the Cch1/VGCC/NALCN cation channel family. Journal of Biological Chemistry, 2017, 292, 20570-20582.                                                        | 3.4 | 9         |
| 53 | Genetic analysis of the regulation of the voltage-gated calcium channel homolog Cch1 by the γ subunit homolog Ecm7 and cortical ER protein Scs2 in yeast. PLoS ONE, 2017, 12, e0181436.                                                                     | 2.5 | 9         |
| 54 | Involvement of Ca <sup>2+</sup> in Vacuole Degradation Caused by a Rapid Temperature Decrease<br>in <i>Saintpaulia</i> Palisade Cells: A Case of Gene Expression Analysis in a Specialized Small Tissue.<br>Plant and Cell Physiology, 2015, 56, 1297-1305. | 3.1 | 8         |

Hidetoshi lida

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Sensors Make Sense of Signaling. Plant and Cell Physiology, 2017, 58, 1121-1125.                                                                                                                                                      | 3.1 | 6         |
| 56 | A Method Enabling Comprehensive Isolation of Arabidopsis Mutants Exhibiting Unusual Root<br>Mechanical Behavior. Frontiers in Plant Science, 2021, 12, 646404.                                                                        | 3.6 | 6         |
| 57 | Polarized Morphogenesis Regulator Spa2 Is Required for the Function of Putative Stretch-Activated Ca 2+ -Permeable Channel Component Mid1 in Saccharomyces cerevisiae. Eukaryotic Cell, 2005, 4, 1353-1363.                           | 3.4 | 5         |
| 58 | Mechanosensitive channel candidate MCA2 is involved in touch-induced root responses in Arabidopsis. Frontiers in Plant Science, 2014, 5, 421.                                                                                         | 3.6 | 5         |
| 59 | Coupling of a voltageâ€gated Ca <sup>2+</sup> channel homologue with a plasma membrane<br>H <sup>+</sup> â€ATPase in yeast. Genes To Cells, 2017, 22, 94-104.                                                                         | 1.2 | 5         |
| 60 | Differential transcription of fd RFI DNA byCaulobacter crescentusandEscherichia coliRNA polymerases. FEBS Letters, 1979, 99, 346-350.                                                                                                 | 2.8 | 3         |
| 61 | Highly conserved extracellular residues mediate interactions between pore-forming and regulatory subunits of the yeast Ca2+ channel related to the animal VGCC/NALCN family. Journal of Biological Chemistry, 2020, 295, 13008-13022. | 3.4 | 3         |
| 62 | KlMID1, a relevant key player between endoplasmic reticulum homeostasis and mitochondrial dysfunction in Kluyveromyces lactis. Microbiology (United Kingdom), 2012, 158, 1694-1701.                                                   | 1.8 | 2         |
| 63 | Molecular Mechanisms of Mechanosensing and Mechanotransduction. , 2018, , 375-397.                                                                                                                                                    |     | 2         |
| 64 | Role of glycine residues highly conserved in the S2–S3 linkers of domains I and II of voltage-gated calcium channel α1 subunits. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 966-974.                                   | 2.6 | 0         |
| 65 | Entanglement of Arabidopsis Seedlings to a Mesh Substrate under Microgravity Conditions in KIBO on the ISS. Plants, 2022, 11, 956.                                                                                                    | 3.5 | О         |