## Pratik P Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4304233/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Biological and mechanical response of laser shock peening orthopaedic titanium alloy (Ti-6Al-7Nb).<br>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine,<br>2022, 236, 1169-1187. | 1.0 | 4         |
| 2  | Response of silicon nitride ceramics subject to laser shock treatment. Ceramics International, 2021, 47, 34538-34553.                                                                                                              | 2.3 | 10        |
| 3  | On restructuring the microstructure of Ti-6Al-7Nb alloy before surface engineering. Materials<br>Characterization, 2020, 169, 110629.                                                                                              | 1.9 | 3         |
| 4  | Residual stresses induced by laser shock peening in orthopaedic Ti-6Al-7Nb alloy. Optics and Laser<br>Technology, 2020, 131, 106446.                                                                                               | 2.2 | 39        |
| 5  | Improving the fretting performance of aero-engine tenon joint materials using surface strengthening.<br>Materials Science and Technology, 2019, 35, 1781-1788.                                                                     | 0.8 | 18        |
| 6  | Altering the wetting properties of orthopaedic titanium alloy (Ti–6Al–7Nb) using laser shock peening.<br>Journal of Alloys and Compounds, 2019, 801, 327-342.                                                                      | 2.8 | 21        |
| 7  | Effect of Laser Shock Peening on Commercially Pure Titanium-1 Weldment Fabricated by Gas Tungsten<br>Arc Welding Technique. Transactions of the Indian Institute of Metals, 2019, 72, 1569-1573.                                   | 0.7 | 11        |
| 8  | Residual stress, phase, microstructure and mechanical property studies of ultrafine bainitic steel through laser shock peening. Optics and Laser Technology, 2019, 115, 447-458.                                                   | 2.2 | 41        |
| 9  | Shock-wave induced compressive stress on alumina ceramics by laser peening. Materials and Design, 2019, 167, 107626.                                                                                                               | 3.3 | 24        |
| 10 | Laser shock peening modified surface texturing, microstructure and mechanical properties of graphene dispersion strengthened aluminium nanocomposites. Surfaces and Interfaces, 2019, 14, 127-137.                                 | 1.5 | 12        |
| 11 | Enhanced surface and mechanical properties of bioinspired nanolaminate graphene-aluminum alloy nanocomposites through laser shock processing for engineering applications. Materials Today Communications, 2018, 16, 81-89.        | 0.9 | 26        |
| 12 | Laser shock peening without coating induced residual stress distribution, wettability characteristics<br>and enhanced pitting corrosion resistance of austenitic stainless steel. Applied Surface Science, 2018,<br>428, 17-30.    | 3.1 | 104       |
| 13 | Surface property modifications of silicon carbide ceramic following laser shock peening. Journal of the European Ceramic Society, 2017, 37, 3027-3038.                                                                             | 2.8 | 30        |
| 14 | Surface engineering alumina armour ceramics with laser shock peening. Materials and Design, 2017, 134, 523-538.                                                                                                                    | 3.3 | 15        |
| 15 | Improvement in mechanical properties of titanium alloy (Ti-6Al-7Nb) subject to multiple laser shock peening. Surface and Coatings Technology, 2017, 327, 101-109.                                                                  | 2.2 | 72        |
| 16 | Alteration of fracture toughness (KIC) following laser shock peening of silicon nitride ceramics. ,<br>2016, , .                                                                                                                   |     | 0         |
| 17 | Laser sealing of dissimilar polymers for manufacturing packaging products. Journal of Laser<br>Applications, 2016, 28, 022428.                                                                                                     | 0.8 | 1         |
| 18 | Modulating the wettability characteristics and bioactivity of polymeric materials using laser surface treatment. Journal of Laser Applications, 2016, 28, .                                                                        | 0.8 | 10        |

PRATIK P SHUKLA

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Laser surface structuring of ceramics, metals and polymers for biomedical applications. , 2016, , 281-299.                                                                                                                                                               |     | 17        |
| 20 | Micro-shot peening of zirconia-advanced ceramic: an examination of surface integrity. Journal of<br>Materials Science, 2015, 50, 1728-1739.                                                                                                                              | 1.7 | 8         |
| 21 | Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response. Proceedings of SPIE, 2015, , .                                                                                                                                    | 0.8 | Ο         |
| 22 | Development in laser peening of advanced ceramics. Proceedings of SPIE, 2015, , .                                                                                                                                                                                        | 0.8 | 1         |
| 23 | Understanding laser beam brightness: A review and new prospective in material processing. Optics and Laser Technology, 2015, 75, 40-51.                                                                                                                                  | 2.2 | 48        |
| 24 | Identification of optical parameters for determination of radiance. Journal of Optics (India), 2015, 44, 12-19.                                                                                                                                                          | 0.8 | 2         |
| 25 | Investigation into the high-speed laser welding feasibility of tin-plated steels available for three-piece<br>food packaging can manufacture. Proceedings of the Institution of Mechanical Engineers, Part B:<br>Journal of Engineering Manufacture, 2014, 228, 715-729. | 1.5 | 3         |
| 26 | Laser shock peening and mechanical shot peening processes applicable for the surface treatment of<br>technical grade ceramics: A review. Proceedings of the Institution of Mechanical Engineers, Part B:<br>Journal of Engineering Manufacture, 2014, 228, 639-652.      | 1.5 | 55        |
| 27 | Role of laser beam radiance in different ceramic processing: A two wavelengths comparison. Optics and Laser Technology, 2013, 54, 380-388.                                                                                                                               | 2.2 | 5         |
| 28 | The influence of brightness during laser surface treatment of Si3N4 engineering ceramics. Optics and Lasers in Engineering, 2012, 50, 1746-1751.                                                                                                                         | 2.0 | 10        |
| 29 | A comparative study on the processing parameters during fibre and CO2 laser surface treatments of silicon nitride engineering ceramic. International Journal of Advanced Manufacturing Technology, 2012, 59, 143-155.                                                    | 1.5 | 6         |
| 30 | Characterization and compositional study of a ZrO2 engineering ceramic irradiated with a fibre laser beam. Optics and Laser Technology, 2011, 43, 1292-1300.                                                                                                             | 2.2 | 15        |
| 31 | Evaluation of fracture toughness of ZrO2 and Si3N4 engineering ceramics following CO2 and fibre laser surface treatment. Optics and Lasers in Engineering, 2011, 49, 229-239.                                                                                            | 2.0 | 20        |
| 32 | Examination of temperature distribution and the thermal effects on Si3N4 engineering ceramics during fibre laser surface treatment. Optics and Lasers in Engineering, 2011, 49, 998-1011.                                                                                | 2.0 | 14        |
| 33 | Modification of fracture toughness parameter <i>K</i> <sub>1c</sub> following CO <sub>2</sub><br>laser surface treatment of Si <sub>3</sub> N <sub>4</sub> engineering ceramic. Surface Engineering,<br>2011, 27, 734-741.                                               | 1.1 | 6         |
| 34 | Distribution of temperature during fibre laser radiation and effects thereon phase transformation of ZrO <sub>2</sub> engineering ceramic. Surface Engineering, 2011, 27, 742-748.                                                                                       | 1.1 | 6         |