Kun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4303995/publications.pdf

Version: 2024-02-01

252 7,562 45 77
papers citations h-index g-index

262 262 262 1772

times ranked

docs citations

all docs

citing authors

#	Article	IF	CITATIONS
1	A Gas-Kinetic BCK Scheme for the Navier–Stokes Equations and Its Connection with Artificial Dissipation and Godunov Method. Journal of Computational Physics, 2001, 171, 289-335.	3.8	566
2	A unified gas-kinetic scheme for continuum and rarefied flows. Journal of Computational Physics, 2010, 229, 7747-7764.	3.8	449
3	Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case. Physical Review E, 2013, 88, 033305.	2.1	289
4	Numerical Hydrodynamics from Gas-Kinetic Theory. Journal of Computational Physics, 1993, 109, 53-66.	3.8	187
5	Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case. Physical Review E, 2015, 91, 033313.	2.1	183
6	A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow. Journal of Computational Physics, 2005, 203, 405-421.	3.8	168
7	A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows II: Multi-Dimensional Cases. Communications in Computational Physics, 2012, 12, 662-690.	1.7	141
8	Microchannel flow in the slip regime: gas-kinetic BGK–Burnett solutions. Journal of Fluid Mechanics, 2004, 513, 87-110.	3.4	129
9	Gas-Kinetic Finite Volume Methods, Flux-Vector Splitting, and Artificial Diffusion. Journal of Computational Physics, 1995, 120, 48-65.	3.8	126
10	Numerical Navier-Stokes Solutions from Gas Kinetic Theory. Journal of Computational Physics, 1994, 114, 9-17.	3.8	125
11	A Well-Balanced Gas-Kinetic Scheme for the Shallow-Water Equations with Source Terms. Journal of Computational Physics, 2002, 178, 533-562.	3.8	121
12	A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows. Journal of Computational Physics, 2008, 227, 4955-4976.	3.8	120
13	A unified gas kinetic scheme with moving mesh and velocity space adaptation. Journal of Computational Physics, 2012, 231, 6643-6664.	3.8	116
14	Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes. Journal of Computational Physics, 2016, 315, 16-38.	3.8	92
15	A High-Order Gas-Kinetic Method for Multidimensional Ideal Magnetohydrodynamics. Journal of Computational Physics, 2000, 165, 69-88.	3.8	86
16	A high-order gas-kinetic Navier–Stokes flow solver. Journal of Computational Physics, 2010, 229, 6715-6731.	3.8	86
17	An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier–Stokes equations. Journal of Computational Physics, 2016, 326, 197-221.	3.8	84
18	Discrete unified gas kinetic scheme on unstructured meshes. Computers and Fluids, 2016, 127, 211-225.	2.5	83

#	Article	IF	Citations
19	The kinetic scheme for the full-Burnett equations. Journal of Computational Physics, 2004, 201, 315-332.	3.8	82
20	A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows III: Microflow Simulations. Communications in Computational Physics, 2013, 14, 1147-1173.	1.7	80
21	Unified gas-kinetic scheme for diatomic molecular simulations in all flow regimes. Journal of Computational Physics, 2014, 259, 96-113.	3.8	77
22	Discrete unified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation. International Journal of Heat and Mass Transfer, 2016, 102, 944-958.	4.8	77
23	Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations. Journal of Computational Physics, 2003, 190, 100-117.	3.8	76
24	A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations. Journal of Computational Physics, 2016, 314, 305-340.	3.8	75
25	A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reactions. Journal of Computational Physics, 2000, 163, 349-375.	3.8	73
26	On the apparent permeability of porous media in rarefied gas flows. Journal of Fluid Mechanics, 2017, 822, 398-417.	3.4	68
27	Super-Burnett solutions for Poiseuille flow. Physics of Fluids, 2003, 15, 2077-2080.	4.0	67
28	A Comparative Study of LBE and DUGKS Methods for Nearly Incompressible Flows. Communications in Computational Physics, 2015, 17, 657-681.	1.7	67
29	BGK-Based Scheme for Multicomponent Flow Calculations. Journal of Computational Physics, 1997, 134, 122-133.	3.8	65
30	Dissipative mechanism in Godunov-type schemes. International Journal for Numerical Methods in Fluids, 2001, 37, 1-22.	1.6	65
31	An improved unified gas-kinetic scheme and the study of shock structures. IMA Journal of Applied Mathematics, 2011, 76, 698-711.	1.6	65
32	An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations. Journal of Computational Physics, 2015, 285, 265-279.	3.8	62
33	Low-Speed Flow Simulation by the Gas-Kinetic Scheme. Journal of Computational Physics, 1999, 150, 17-39.	3.8	59
34	A Unified Gas Kinetic Scheme for Continuum and Rarefied Flows V: Multiscale and Multi-Component Plasma Transport. Communications in Computational Physics, 2017, 22, 1175-1223.	1.7	59
35	Unified gas-kinetic scheme with multigrid convergence for rarefied flow study. Physics of Fluids, 2017, 29, .	4.0	58
36	Gas-Kinetic Theory-Based Flux Splitting Method for Ideal Magnetohydrodynamics. Journal of Computational Physics, 1999, 153, 334-352.	3.8	57

#	Article	IF	CITATIONS
37	Regularization of the Chapman–Enskog expansion and its description of shock structure. Physics of Fluids, 2002, 14, L17-L20.	4.0	53
38	Current trends and key considerations in the clinical translation of targeted fluorescent probes for intraoperative navigation. Aggregate, 2021, 2, e23.	9.9	53
39	A Runge–Kutta discontinuous Galerkin method for viscous flow equations. Journal of Computational Physics, 2007, 224, 1223-1242.	3.8	51
40	A comparative study of an asymptotic preserving scheme and unified gas-kinetic scheme in continuum flow limit. Journal of Computational Physics, 2015, 288, 52-65.	3.8	51
41	Unified gas-kinetic wave-particle methods I: Continuum and rarefied gas flow. Journal of Computational Physics, 2020, 401, 108977.	3.8	51
42	Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator. Optics Letters, 2008, 33, 288.	3.3	50
43	Unified gas-kinetic wave-particle methods. II. Multiscale simulation on unstructured mesh. Physics of Fluids, 2019, 31, .	4.0	49
44	Progress of discrete unified gas-kinetic scheme for multiscale flows. Advances in Aerodynamics, 2021, 3, .	2.5	46
45	A three-dimensional multidimensional gas-kinetic scheme for the Navier–Stokes equations under gravitational fields. Journal of Computational Physics, 2007, 226, 2003-2027.	3.8	45
46	The Effect of MMT/Modified MMT on the Structure and Performance of the Superabsorbent Composite. Polymer Bulletin, 2008, 60, 69-78.	3.3	45
47	A Well-Balanced Symplecticity-Preserving Gas-Kinetic Scheme for Hydrodynamic Equations under Gravitational Field. SIAM Journal of Scientific Computing, 2011, 33, 2356-2381.	2.8	45
48	A multi-dimensional high-order discontinuous Galerkin method based on gas kinetic theory for viscous flow computations. Journal of Computational Physics, 2015, 292, 176-193.	3.8	45
49	Application of Gas-Kinetic Scheme with Kinetic Boundary Conditions in Hypersonic Flow. AIAA Journal, 2005, 43, 2170-2176.	2.6	44
50	A unified moving grid gas-kinetic method in Eulerian space for viscous flow computation. Journal of Computational Physics, 2007, 222, 155-175.	3.8	43
51	Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations. Journal of Computational Physics, 2011, 230, 5080-5099.	3.8	43
52	An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations. Journal of Computational Physics, 2015, 302, 222-238.	3.8	43
53	A paradigm for modeling and computation of gas dynamics. Physics of Fluids, 2017, 29, 026101.	4.0	41
54	A compact fourth-order gas-kinetic scheme for the Euler and Navier–Stokes equations. Journal of Computational Physics, 2018, 372, 446-472.	3.8	41

#	Article	IF	CITATIONS
55	Gas-kinetic schemes for the compressible Euler equations: Positivity-preserving analysis. Zeitschrift Fur Angewandte Mathematik Und Physik, 1999, 50, 258.	1.4	40
56	A high-order multidimensional gas-kinetic scheme for hydrodynamic equations. Science China Technological Sciences, 2013, 56, 2370-2384.	4.0	40
57	A gas-kinetic scheme for shallow-water equations with source terms. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 365-382.	1.4	39
58	Multiple temperature kinetic model and its applications to micro-scale gas flows. Computers and Fluids, 2012, 67, 115-122.	2.5	39
59	A family of high-order gas-kinetic schemes and its comparison with Riemann solver based high-order methods. Journal of Computational Physics, 2018, 356, 150-173.	3.8	39
60	A three-dimensional unified gas-kinetic wave-particle solver for flow computation in all regimes. Physics of Fluids, 2020, 32, .	4.0	39
61	Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations. Journal of Computational Physics, 2008, 227, 6779-6794.	3.8	38
62	An implicit unified gas-kinetic scheme for unsteady flow in all Knudsen regimes. Journal of Computational Physics, 2019, 386, 190-217.	3.8	38
63	Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator. Optics Express, 2007, 15, 18156.	3.4	37
64	A Well-balanced Kinetic Scheme for Gas Dynamic Equations under Gravitational Field. Advances in Applied Mathematics and Mechanics, 2010, 2, 200-210.	1.2	37
65	Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube. Physics of Fluids, 2018, 30, .	4.0	36
66	A Boltzmann based model for open channel flows. International Journal for Numerical Methods in Fluids, 2001, 35, 449-494.	1.6	35
67	A compressible Navier–Stokes flow solver with scalar transport. Journal of Computational Physics, 2005, 204, 692-714.	3.8	34
68	Spontaneous volume transition of polyampholyte nanocomposite hydrogels based on pure electrostatic interaction. Journal of Colloid and Interface Science, 2008, 321, 272-278.	9.4	34
69	A third-order compact gas-kinetic scheme on unstructured meshes for compressible Navier–Stokes solutions. Journal of Computational Physics, 2016, 318, 327-348.	3.8	34
70	Rayleigh-Bénard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme in the incompressible limit. Physical Review E, 1999, 60, 464-470.	2.1	33
71	BGK-Based Schemes for the Simulation of Compressible Flow. International Journal of Computational Fluid Dynamics, 1996, 7, 213-235.	1.2	32
72	Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes. Journal of Computational Physics, 2017, 350, 237-259.	3.8	32

#	Article	IF	Citations
73	A unified gas-kinetic scheme for continuum and rarefied flows VI: Dilute disperse gas-particle multiphase system. Journal of Computational Physics, 2019, 386, 264-295.	3.8	32
74	Linear and nonlinear analysis of shallow wakes. Journal of Fluid Mechanics, 2006, 548, 309.	3.4	31
75	A Comparison and Unification of Ellipsoidal Statistical and Shakhov BGK Models. Advances in Applied Mathematics and Mechanics, 2015, 7, 245-266.	1.2	31
76	Projection Dynamics in Godunov-Type Schemes. Journal of Computational Physics, 1998, 142, 412-427.	3.8	30
77	Nonequilibrium Bhatnagar–Gross–Krook model for nitrogen shock structure. Physics of Fluids, 2004, 16, 3824-3827.	4.0	29
78	Compact higher-order gas-kinetic schemes with spectral-like resolution for compressible flow simulations. Advances in Aerodynamics, 2019, 1 , .	2.5	29
79	A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh. Journal of Computational Physics, 2017, 351, 455-472.	3.8	28
80	Implicit high-order gas kinetic scheme for turbulence simulation. Aerospace Science and Technology, 2019, 92, 958-971.	4.8	28
81	Unified gas-kinetic wave-particle methods III: Multiscale photon transport. Journal of Computational Physics, 2020, 408, 109280.	3.8	27
82	Multiple-temperature kinetic model for continuum and near continuum flows. Physics of Fluids, 2007, 19, 016101.	4.0	26
83	One-Dimensional Multiple-Temperature Gas-Kinetic Bhatnagar-Gross-Krook Scheme for Shock Wave Computation. AIAA Journal, 2008, 46, 1054-1062.	2.6	26
84	An adaptive grid method for two-dimensional viscous flows. Journal of Computational Physics, 2006, 218, 68-81.	3.8	24
85	An Implicit Unified Gas Kinetic Scheme for Radiative Transfer with Equilibrium and Non-Equilibrium Diffusive Limits. Communications in Computational Physics, 2017, 22, 889-912.	1.7	24
86	A HWENO reconstruction based high-order compact gas-kinetic scheme on unstructured mesh. Journal of Computational Physics, 2020, 410, 109367.	3.8	24
87	A multi-dimensional high-order DG-ALE method based on gas-kinetic theory with application to oscillating bodies. Journal of Computational Physics, 2016, 316, 700-720.	3.8	23
88	Simplification of the unified gas kinetic scheme. Physical Review E, 2016, 94, 023313.	2.1	23
89	A velocity-space adaptive unified gas kinetic scheme for continuum and rarefied flows. Journal of Computational Physics, 2020, 415, 109535.	3.8	23
90	Multiple translational temperature model and its shock structure solution. Physical Review E, 2005, 71, 056308.	2.1	22

#	Article	IF	Citations
91	Remapping-free ALE-type kinetic method for flow computations. Journal of Computational Physics, 2009, 228, 3154-3171.	3.8	21
92	On the remedy against shock anomalies in kinetic schemes. Journal of Computational Physics, 2013, 255, 106-129.	3.8	21
93	A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field. Journal of Computational Physics, 2017, 332, 475-491.	3.8	21
94	Two-stage fourth-order gas-kinetic scheme for three-dimensional Euler and Navier-Stokes solutions. International Journal of Computational Fluid Dynamics, 2018, 32, 395-411.	1.2	21
95	Three dimensional high-order gas-kinetic scheme for supersonic isotropic turbulence I: Criterion for direct numerical simulation. Computers and Fluids, 2019, 192, 104273.	2.5	21
96	Modeling and computation for non-equilibrium gas dynamics: Beyond single relaxation time kinetic models. Physics of Fluids, 2021, 33, .	4.0	21
97	All-Optical Logic or Gate Exploiting Nonlinear Polarization Rotation in an SOA and Red-Shifted Sideband Filtering. IEEE Photonics Technology Letters, 2007, 19, 33-35.	2.5	20
98	Comparison of Fifth-Order WENO Scheme and Finite Volume WENO-Gas-Kinetic Scheme for Inviscid and Viscous Flow Simulation. Communications in Computational Physics, 2013, 14, 599-620.	1.7	20
99	Unified gas-kinetic wave-particle methods IV: multi-species gas mixture and plasma transport. Advances in Aerodynamics, 2021, 3, .	2.5	20
100	A Boltzmann-based mesoscopic model for contaminant transport in flow systems. Advances in Water Resources, 2001, 24, 531-550.	3.8	19
101	The numerical study of roll-waves in inclined open channels and solitary wave run-up. International Journal for Numerical Methods in Fluids, 2006, 50, 1003-1027.	1.6	19
102	A Two-Stage Fourth-Order Gas-Kinetic Scheme for Compressible Multicomponent Flows. Communications in Computational Physics, 2017, 22, 1123-1149.	1.7	19
103	Discontinuous Galerkin BGK Method for Viscous Flow Equations: One-Dimensional Systems. SIAM Journal of Scientific Computing, 2004, 25, 1941-1963.	2.8	18
104	A new gas-kinetic scheme based on analytical solutions of the BGK equation. Journal of Computational Physics, 2013, 234, 524-539.	3.8	18
105	A Compact Third-Order Gas-Kinetic Scheme for Compressible Euler and Navier-Stokes Equations. Communications in Computational Physics, 2015, 18, 985-1011.	1.7	18
106	ANALYSIS AND IMPLEMENTATION OF THE GAS-KINETIC BGK SCHEME FOR COMPUTATIONAL GAS DYNAMICS. International Journal for Numerical Methods in Fluids, 1997, 25, 21-49.	1.6	17
107	Manganese-tuned chemical etching of a platinum–copper nanocatalyst with platinum-rich surfaces. Journal of Power Sources, 2016, 304, 74-80.	7.8	17
108	Application of perturbation theory to chain and polar fluids. Fluid Phase Equilibria, 1998, 142, 55-66.	2.5	16

#	Article	lF	CITATIONS
109	The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 1022-1029.	3.4	16
110	A third-order gas-kinetic scheme for three-dimensional inviscid and viscous flow computations. Computers and Fluids, 2015, 119, 250-260.	2.5	16
111	Physical modeling and numerical studies of three-dimensional non-equilibrium multi-temperature flows. Physics of Fluids, 2018, 30, 126104.	4.0	16
112	An investigation of non-equilibrium heat transport in a gas system under external force field. International Journal of Heat and Mass Transfer, 2018, 126, 362-379.	4.8	16
113	A Gas-Kinetic Scheme for the Euler Equations with Heat Transfer. SIAM Journal of Scientific Computing, 1999, 20, 1317-1335.	2.8	15
114	NUMERICAL SIMULATIONS OF RESONANT OSCILLATIONS IN A TUBE. Numerical Heat Transfer; Part A: Applications, 2001, 40, 37-54.	2.1	15
115	A Few Benchmark Test Cases for Higher-Order Euler Solvers. Numerical Mathematics, 2017, 10, 711-736.	1.3	15
116	The dynamic mechanism of a moving Crookes radiometer. Physics of Fluids, 2012, 24, .	4.0	14
117	Simplification of the flux function for a high-order gas-kinetic evolution model. Journal of Computational Physics, 2017, 339, 146-162.	3.8	14
118	High-order gas-kinetic scheme on three-dimensional unstructured meshes for compressible flows. Physics of Fluids, 2021, 33, .	4.0	14
119	A new class of gas-kinetic relaxation schemes for the compressible Euler equations. Journal of Statistical Physics, 1995, 81, 147-164.	1.2	13
120	Dispersion-Compensation Schemes for 160-Gb/s 1200-km Transmission by Optical Phase Conjugation. Journal of Lightwave Technology, 2007, 25, 1986-1995.	4.6	13
121	High-order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics. Journal of Computational Physics, 2007, 227, 967-982.	3.8	13
122	Cartesian grid method for gas kinetic scheme on irregular geometries. Journal of Computational Physics, 2016, 326, 862-877.	3.8	13
123	High-order gas-kinetic scheme with parallel computation for direct numerical simulation of turbulent flows. Journal of Computational Physics, 2022, 448, 110739.	3.8	13
124	A compact high-order gas-kinetic scheme on unstructured mesh for acoustic and shock wave computations. Journal of Computational Physics, 2022, 449, 110812.	3.8	13
125	Gas-Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows. Journal of Spacecraft and Rockets, 2007, 44, 1232-1240.	1.9	12
126	Multiscale gas-kinetic simulation for continuum and near-continuum flows. Physical Review E, 2007, 75, 016306.	2.1	12

#	Article	IF	CITATIONS
127	Gas exchange and resource utilization in two alpine oaks at different altitudes in the Hengduan Mountains. Canadian Journal of Forest Research, 2007, 37, 1184-1193.	1.7	12
128	Unified gas-kinetic wave-particle methods V: Diatomic molecular flow. Journal of Computational Physics, 2021, 442, 110496.	3.8	12
129	Title is missing!. Journal of Scientific Computing, 2000, 15, 19-28.	2.3	11
130	A novel method to achieve various equivalent chirp profiles in sampled Bragg gratings using uniform-period phase masks. Optics Communications, 2002, 205, 71-75.	2.1	11
131	A DGBGK scheme based on WENO limiters for viscous and inviscid flows. Journal of Computational Physics, 2008, 227, 5799-5815.	3.8	11
132	Efficient kinetic schemes for steady and unsteady flow simulations on unstructured meshes. Journal of Computational Physics, 2008, 227, 3015-3031.	3.8	11
133	Experimental demonstration of polarization multiplexing for simultaneously providing broadband wireless and wired access. Optics Communications, 2008, 281, 2806-2810.	2.1	11
134	An Acoustic and Shock Wave Capturing Compact High-Order Gas-Kinetic Scheme with Spectral-Like Resolution. International Journal of Computational Fluid Dynamics, 2020, 34, 731-756.	1.2	11
135	Fourth-order gas-kinetic scheme for turbulence simulation with multi-dimensional WENO reconstruction. Computers and Fluids, 2021, 221, 104927.	2.5	11
136	A Three Dimensional Gas-Kinetic Scheme with Moving Mesh for Low-Speed Viscous Flow Computations. Advances in Applied Mathematics and Mechanics, 2010, 2, 746-762.	1.2	11
137	A Slope-Update Scheme for Compressible Flow Simulation. Journal of Computational Physics, 2002, 178, 252-259.	3.8	10
138	Nonequilibrium Relaxation in High Speed Flows. , 2004, , .		10
139	A generalized Bhatnagar–Gross–Krook model for nonequilibrium flows. Physics of Fluids, 2008, 20, 026101.	4.0	10
140	Onsager's cross coupling effects in gas flows confined to micro-channels. Physical Review Fluids, $2016, 1, \dots$	2.5	10
141	A unified gas-kinetic scheme for micro flow simulation based on linearized kinetic equation. Advances in Aerodynamics, 2020, 2, .	2.5	10
142	Gas-kinetic relaxation (BGK-type) schemes for the compressible Euler equations. , 1995, , .		9
143	Connection Between Lattice-Boltzmann Equation and Beam Scheme. International Journal of Modern Physics C, 1998, 09, 1177-1187.	1.7	9
144	Stability and consistency of kinetic upwinding for advection–diffusion equations. IMA Journal of Numerical Analysis, 2006, 26, 686-722.	2.9	9

#	Article	IF	Citations
145	Unified gas-kinetic scheme for multi-species non-equilibrium flow. , 2014, , .		9
146	Systematic study of packaging designs on the performance of CMOS thermoresistive micro calorimetric flow sensors. Journal of Micromechanics and Microengineering, 2017, 27, 085001.	2.6	9
147	High-order gas-kinetic scheme with three-dimensional WENO reconstruction for the Euler and Navier-Stokes solutions. Computers and Fluids, 2020, 198, 104401.	2.5	9
148	High-order gas-kinetic scheme for large eddy simulation of turbulent channel flows. Physics of Fluids, 2021, 33, 125102.	4.0	9
149	A gas-kinetic scheme for reactive flows. Computers and Fluids, 2000, 29, 725-748.	2.5	8
150	A Kinetic Method for Hyperbolic–Elliptic Equations and Its Application in Two-Phase Flow. Journal of Computational Physics, 2001, 166, 383-399.	3.8	8
151	Entropy analysis of kinetic flux vector splitting schemes for the compressible Euler equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2001, 52, 62-78.	1.4	8
152	Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping. IEEE Photonics Technology Letters, 2005, 17, 2209-2211.	2.5	8
153	Computational Fluid Dynamics Based on the Unified Coordinates. , 2012, , .		8
154	To overcome memory barrier of kinetic solvers for non-equilibrium flow study. Science Bulletin, 2017, 62, 99-101.	9.0	8
155	Multiscale Simulation for the System of Radiation Hydrodynamics. Journal of Scientific Computing, 2020, 85, 1.	2.3	8
156	The study of shallow water flow with bottom topography by high-order compact gas-kinetic scheme on unstructured mesh. Physics of Fluids, 2021, 33, .	4.0	8
157	Comparison of the performance of high-order schemes based on the gas-kinetic and HLLC fluxes. Journal of Computational Physics, 2022, 448, 110706.	3.8	8
158	Unified gas-kinetic wave–particle method for gas–particle two-phase flow from dilute to dense solid particle limit. Physics of Fluids, 2022, 34, .	4.0	8
159	Modified gas-kinetic scheme for shock structures in argon. Progress in Computational Fluid Dynamics, 2008, 8, 97.	0.2	7
160	Kinetic Node-Pair Formulation for Two-Dimensional Flows from Continuum to Transitional Regime. AIAA Journal, 2013, 51, 784-796.	2.6	7
161	A unified gas-kinetic scheme for axisymmetric flow in all Knudsen number regimes. Journal of Computational Physics, 2018, 366, 144-169.	3.8	7
162	Limitation principle for computational fluid dynamics. Shock Waves, 2019, 29, 1083-1102.	1.9	7

#	Article	IF	CITATIONS
163	A unified gas-kinetic scheme for multiscale and multicomponent flow transport. Applied Mathematics and Mechanics (English Edition), 2019, 40, 355-372.	3.6	7
164	Ray effect in rarefied flow simulation. Journal of Computational Physics, 2020, 422, 109751.	3.8	7
165	High-order ALE gas-kinetic scheme with WENO reconstruction. Journal of Computational Physics, 2020, 417, 109558.	3.8	7
166	Performance evaluation of systems using a novel adjustable first-order PMD compensator and forward error correction. Optics Communications, 2003, 218, 49-54.	2.1	6
167	Generalized coordinate transformation and gas-kinetic scheme. Journal of Computational Physics, 2015, 287, 207-225.	3.8	6
168	Fifth order finite volume WENO in general orthogonally - curvilinear coordinates. Computers and Fluids, 2019, 190, 398-424.	2.5	6
169	GKS and UGKS for High-Speed Flows. Aerospace, 2021, 8, 141.	2.2	6
170	Compact High-Order Gas-Kinetic Scheme for Three-Dimensional Flow Simulations. AIAA Journal, 0, , 1-18.	2.6	6
171	Three dimensional high-order gas-kinetic scheme for supersonic isotropic turbulence II: Coarse-graining analysis of compressible K budget. Journal of Computational Physics, 2021, 439, 110402.	3.8	6
172	Valid Physical Processes from Numerical Discontinuities in Computational Fluid Dynamics. International Journal of Hypersonics, 2010, 1, 157-172.	0.2	6
173	Gas-kinetic finite volume methods. , 1995, , 106-111.		5
174	UNSPLITTING BGK-TYPE SCHEMES FOR THE SHALLOW WATER EQUATIONS. International Journal of Modern Physics C, 1999, 10, 505-516.	1.7	5
175	Testing Continuum and Non-Continuum Descriptions in High Speed Flows. AIP Conference Proceedings, 2005, , .	0.4	5
176	Multiple Temperature Gas Dynamic Equations for Non-equilibrium Flows. Journal of Computational Mathematics, 2011, 29, 639-660.	0.4	5
177	Direct modeling for computational fluid dynamics. Acta Mechanica Sinica/Lixue Xuebao, 2015, 31, 303-318.	3.4	5
178	Kinetic Methods for Solving the Internal Structure of Shock Waves. , 2009, , .		5
179	Performance Enhancement for High-Order Gas-Kinetic Scheme Based on WENO-Adaptive-Order Reconstruction. Communications in Computational Physics, 2020, 28, 539-590.	1.7	5
180	Low Cationic Proportion Ampholytic Polymer: Synthesis, Solution Properties and Interaction with Anionic Surfactant. Polymer Bulletin, 2008, 60, 545-554.	3.3	4

#	Article	IF	CITATIONS
181	A BGK-Based Discontinuous Galerkin Method for the Navier-Stokes Equations on Arbitrary Grids. , 2008, , .		4
182	An efficient high-order finite difference gas-kinetic scheme for the Euler and Navier–Stokes equations. Computers and Fluids, 2018, 166, 243-252.	2.5	4
183	Time Implicit Unified Gas Kinetic Scheme for 3D Multi-Group Neutron Transport Simulation. Communications in Computational Physics, 2020, 28, 1189-1218.	1.7	4
184	A Gradient Compression-Based Compact High-Order Gas-Kinetic Scheme on 3D Hybrid Unstructured Meshes. International Journal of Computational Fluid Dynamics, 2021, 35, 485-509.	1.2	4
185	A Discontinuous Galerkin Method Based on a Gas Kinetic Scheme for the Navier-Stokes Equations on Arbitrary Grids. , 2009, , 423-428.		4
186	Pseudoparticle representation and positivity analysis of explicit and implicit Steger-Warming FVS schemes. Zeitschrift Fur Angewandte Mathematik Und Physik, 2001, 52, 847-858.	1.4	3
187	Gas-kinetic scheme for rarefied flow simulation. Mathematics and Computers in Simulation, 2006, 72, 253-256.	4.4	3
188	AGET ATRP of Acrylamide in Aqueous Media. E-Polymers, 2008, 8, .	3.0	3
189	GENERALIZED GAS DYNAMIC EQUATIONS WITH MULTIPLE TRANSLATIONAL TEMPERATURES. Modern Physics Letters B, 2009, 23, 237-240.	1.9	3
190	Generalized Gas Dynamic Equations. , 2009, , .		3
191	Unified gas-kinetic simulation of slider air bearing. Theoretical and Applied Mechanics Letters, 2014, 4, 022001.	2.8	3
192	A Well-Balanced Gas Kinetic Scheme for Navier-Stokes Equations with Gravitational Potential. Communications in Computational Physics, 2020, 28, 902-926.	1.7	3
193	Progress of the unified wave-particle methods for non-equilibrium flows from continuum to rarefied regimes. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	3.4	3
194	Analytical expression and system simulation of eye opening penalty for chirped sampled Bragg grating dispersion compensator. Optics Communications, 2002, 203, 93-99.	2.1	2
195	The gas-kinetic scheme for shallow water equations. Journal of Hydrodynamics, 2006, 18, 73-76.	3.2	2
196	Multiple Temperature Kinetic Model for Non-Equilibrium Flow Computations., 2007,,.		2
197	Non-Equilibrium Shock Structure Computation with a Kinetic BGK Scheme. , 2007, , .		2
198	A gas-kinetic discontinuous Galerkin method for viscous flow equations. Journal of Mechanical Science and Technology, 2007, 21, 1344-1351.	1.5	2

#	Article	IF	CITATIONS
199	A BGK-Based Discontinuous Galerkin Method for the Navier-Stokes Equations on Arbitrary Grids. , 2010, , 103-122.		2
200	A Cartesian grid-based unified gas kinetic scheme. AIP Conference Proceedings, 2014, , .	0.4	2
201	Multiscale Radiative Transfer in Cylindrical Coordinates. Communications on Applied Mathematics and Computation, 2019, 1, 117-139.	1.7	2
202	An Arbitrary-Lagrangian-Eulerian High-Order Gas-Kinetic Scheme for Three-Dimensional Computations. Journal of Scientific Computing, 2021, 88, 1.	2.3	2
203	Gas-Kinetic BGK Scheme for Three Dimensional Magnetohydrodynamics. Numerical Mathematics, 2010, 3, 387-404.	1.3	2
204	Dissipative Mechanism in Godunov Method., 2001,, 309-321.		2
205	Special Issue on Recent Hot Topics in Rarefied Gas Dynamics. International Journal of Computational Fluid Dynamics, 2021, 35, 563-565.	1.2	2
206	Numerical Transport Process of Splitting Kinetic Schemes in the Navier–Stokes–Fourier Limit. International Journal of Computational Fluid Dynamics, 2021, 35, 653-665.	1.2	2
207	Does perfect Riemann solver exist?. , 1999, , .		1
208	Analysis of DOP feedback signal in PMD compensation system based on the different modulation formats., 2005, 5625, 628.		1
209	Performance analysis of DPSK modulated signals in optical transmission link with PMD and PDL. , 2005, 5625, 1048.		1
210	Analysis of four-wave mixing effects in 40Gbit/s CSRZ/RZ-DPSK systems. , 2005, , .		1
211	Optical phase multiplexing through four-wave mixing in optical fiber. , 2005, , .		1
212	A One-Dimensional Multiple-Temperature Gas-Kinetic BGK Scheme for Shock Wave Computation., 2006,,		1
213	Study of vacuum gas flows with the unified gas-kinetic scheme. , 2014, , .		1
214	A gas-kinetic theory based multidimensional high-order method for the compressible Navier–Stokes solutions. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 733-741.	3.4	1
215	Dissipative mechanism in Godunovâ€type schemes. International Journal for Numerical Methods in Fluids, 2001, 37, 1-22.	1.6	1
216	Gas-Kinetic Schemes for Fluid Simulations. , 2001, , 14-27.		1

#	Article	IF	Citations
217	High-Order Gas-Kinetic Scheme in Curvilinear Coordinates for the Euler and Navier-Stokes Solutions. Communications in Computational Physics, 2020, 28, 1321-1351.	1.7	1
218	A p-multigrid compact gas-kinetic scheme for steady-state acceleration. Computers and Fluids, 2022, , 105489.	2.5	1
219	Euler multigrid calculations using a gas-kinetic scheme. , 1995, , .		0
220	Performance of the optical label eraser based on Lyot-Sagnac filter., 2001, 4585, 198.		0
221	Numerical Dissipation and Shock Capturing Schemes. , 2003, , .		0
222	Performance evaluation of dynamic PMD compensator using optical signal DOP in optical transmission link with PMD and PDL., 2004, 5281, 314.		0
223	A simple novel all-optical XOR logic gate implementation. , 2005, , .		0
224	Study of wavelength conversion based on cross polarization modulation in semiconductor optical amplifier. , 2005 , , .		0
225	PMD and CD tunable compensation using the nonlinear chirp SBG with uniform grating period. , 2005, , .		0
226	Study on the adaptive polarization state control in coherent optical communication systems., 2005,,.		0
227	40 Gbit/s all-optical wavelength conversion with enhanced performance based on nonlinear polarization rotation (NPR) in SOA with AWG filtering. , 2005, , .		0
228	Gas-Kinetic Model for Navier-Stokes Solutions with Multiple Translational Temperatures. , 2005, , .		0
229	The gas-kinetic scheme for shallow water equations. Journal of Hydrodynamics, 2006, 18, 73-76.	3.2	0
230	Gas Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows. , 2007, , .		0
231	Gas-kinetic BGK Scheme for three dimensional magnetohydrodynamics. , 2007, , .		0
232	Moving grid gas-kinetic method and numerical simulation of freely falling plates. , 2007, , .		0
233	Multiple Temperature Kinetic Model for Continuum and Near Continuum Flows. , 2007, , .		0
234	Multiple temperature model for near continuum flows. Journal of Mechanical Science and Technology, 2007, 21, 1376-1382.	1.5	0

#	Article	IF	CITATIONS
235	Multiple Temperature Kinetic Model for Near Continuum Flow. , 2008, , .		O
236	Extended Gas Dynamic Equations with Multiple Translational Temperature., 2008,,.		0
237	Development of a Discontinuous Galerkin Method for Computational Fluid Dynamics. , 2009, , .		0
238	A High-Order Gas-Kinetic Navier-Stokes Flow Solver. , 2010, , .		0
239	Numerical simulation of hypersonic transitional flows by means of a kinetic node-pair approach. , 2011, , .		0
240	Unified Gas-kinetic Scheme for all Knudsen Number Flows. , 2011, , .		0
241	A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows. , 2011, , .		0
242	A Symplectic-preserving Gas-kinetic Scheme for Hydrodynamic Equations under external forcing Field. , 2011, , .		0
243	Preface: Special Issue on Progress in Fluid Dynamics and Simulation (PFDS). Communications in Computational Physics, 2015, 18, i-ii.	1.7	0
244	Application of unified gas-kinetic scheme for hypersonic non-equilibrium flow. , 2017, , .		0
245	Validation of Gas-Kinetic Scheme Solver for the Compressible and Incompressible Flows Simulation. , 2017, , .		0
246	Unified gas kinetic schemes for the radiation transfer equations. Scientia Sinica Mathematica, 2021, 51, 799.	0.2	0
247	Kinematic and dynamic dissipation in shock capturing schemes. , 2003, , 1201-1204.		0
248	Comments on Current Methods for Multi-Dimensional Flow Computation., 2012,, 69-77.		0
249	Review of Eulerian Computation for 1-D Inviscid Flow. , 2012, , 19-41.		0
250	On the construction of BGK-type schemes for compressible flow simulations. , 1996, , .		0
251	Fifth-Order Finite-Volume WENO on Cylindrical Grids. Lecture Notes in Computational Science and Engineering, 2020, , 637-648.	0.3	0
252	Gas-Kinetic BGK Scheme for Hypersonic Viscous Flow. , 2006, , 183-188.		0