
Juan DÃ-az MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4303954/publications.pdf

Version: 2024-02-01

Ιιίλη Πάλς Μλατάμ

#	Article	IF	CITATIONS
1	Characterizing the Invasive Tumor Front of Aggressive Uterine Adenocarcinoma and Leiomyosarcoma. Frontiers in Cell and Developmental Biology, 2021, 9, 670185.	1.8	5
2	A Novel NFIX-STAT6 Gene Fusion in Solitary Fibrous Tumor: A Case Report. International Journal of Molecular Sciences, 2021, 22, 7514.	1.8	4
3	Sarcoma classification by DNA methylation profiling. Nature Communications, 2021, 12, 498.	5.8	237
4	Evaluation of NAB2-STAT6 Fusion Variants and Other Molecular Alterations as Prognostic Biomarkers in a Case Series of 83 Solitary Fibrous Tumors. Cancers, 2021, 13, 5237.	1.7	9
5	Molecular Approaches to Diagnosis in Ewing Sarcoma: Targeted RNA Sequencing. Methods in Molecular Biology, 2021, 2226, 105-116.	0.4	1
6	Hippo pathway effectors YAP1/TAZ induce an <i>EWS–FLl1</i> â€opposing gene signature and associate with disease progression in Ewing sarcoma. Journal of Pathology, 2020, 250, 374-386.	2.1	19
7	Pazopanib for treatment of typical solitary fibrous tumours: a multicentre, single-arm, phase 2 trial. Lancet Oncology, The, 2020, 21, 456-466.	5.1	51
8	Breakthrough Technologies Reshape the Ewing Sarcoma Molecular Landscape. Cells, 2020, 9, 804.	1.8	8
9	Abstract 6158: The relevance of endoglin and MMP14 to the metastatic potential of Ewing sarcoma cells. , 2020, , .		0
10	DNA methylation profiling distinguishes Ewing-like sarcoma with EWSR1–NFATc2 fusion from Ewing sarcoma. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1273-1281.	1.2	50
11	Pazopanib for treatment of advanced malignant and dedifferentiated solitary fibrous tumour: a multicentre, single-arm, phase 2 trial. Lancet Oncology, The, 2019, 20, 134-144.	5.1	97
12	What's in a name? Molecular subclassification of sarcomas creates fresh challenges. Journal of Pathology, 2019, 247, 409-412.	2.1	2
13	Preclinical Efficacy of Endoglin-Targeting Antibody–Drug Conjugates for the Treatment of Ewing Sarcoma. Clinical Cancer Research, 2019, 25, 2228-2240.	3.2	44
14	Nuclear TAZ expression associates with the triple-negative phenotype in breast cancer. Endocrine-Related Cancer, 2015, 22, 443-454.	1.6	66
15	A role for the transducer of the Hippo pathway, TAZ, in the development of aggressive types of endometrial cancer. Modern Pathology, 2015, 28, 1492-1503.	2.9	23
16	Zeb1 and <scp>S</scp> nail1 engage mi <scp>R</scp> â€200f transcriptional and epigenetic regulation during <scp>EMT</scp> . International Journal of Cancer, 2015, 136, E62-73.	2.3	52
17	A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition. Journal of Pathology, 2014, 232, 319-329.	2.1	66
18	VGLL1 expression is associated with a triple-negative basal-like phenotype in breast cancer. Endocrine-Related Cancer, 2014, 21, 587-599.	1.6	53

Juan DÃaz MartÃn

#	Article	IF	CITATIONS
19	Molecular events in endometrial carcinosarcomas and the role of high mobility group AT-hook 2 in endometrial carcinogenesis. Human Pathology, 2013, 44, 244-254.	1.1	30
20	Oncogene alterations in endometrial carcinosarcomas. Human Pathology, 2013, 44, 852-859.	1.1	27
21	ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma. Modern Pathology, 2013, 26, 1514-1524.	2.9	68
22	Age-Mediated Transcriptomic Changes in Adult Mouse Substantia Nigra. PLoS ONE, 2013, 8, e62456.	1.1	15
23	Genetics of Endometrial Carcinoma. , 2013, , 349-390.		1
24	MicroRNA-200 Family Modulation in Distinct Breast Cancer Phenotypes. PLoS ONE, 2012, 7, e47709.	1.1	85
25	Intermediate alleles at the FRAXA and FRAXE loci in Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 281-284.	1.1	16
26	Heat shock protein 70 kDa over-expression and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal degeneration in mice. Neuroscience, 2011, 193, 323-329.	1.1	4
27	Mesencephalic and striatal protein profiles in mice over-expressing glucose-6-phosphate dehydrogenase in dopaminergic neurons. Journal of Proteomics, 2010, 73, 1747-1757.	1.2	5
28	Brain-derived neurotrophic factor G196A polymorphism and clinical features in Parkinson's disease. Acta Neurologica Scandinavica, 2010, 122, 41-45.	1.0	37
29	The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biology, 2009, 9, 75.	1.6	57
30	Prevalence and clinical features ofLRRK2mutations in patients with Parkinson's disease in southern Spain. European Journal of Neurology, 2009, 16, 957-960.	1.7	32
31	Glucose-6-phosphate dehydrogenase activity in Parkinson's disease. Journal of Neurology, 2008, 255, 1850-1851.	1.8	8
32	Functional Interaction between Two Transcription Factors Involved in the Developmental Regulation of a Small Heat Stress Protein Gene Promoter. Plant Physiology, 2005, 139, 1483-1494.	2.3	80
33	A Seed-specific Heat-shock Transcription Factor Involved in Developmental Regulation during Embryogenesis in Sunflower. Journal of Biological Chemistry, 2002, 277, 43866-43872.	1.6	81