Petr Kohout

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4303774/publications.pdf

Version: 2024-02-01

51 papers

8,442 citations

218381 26 h-index 53 g-index

56 all docs 56
docs citations

56 times ranked 9520 citing authors

#	Article	IF	CITATIONS
1	Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22, 5271-5277.	2.0	2,997
2	Global diversity and geography of soil fungi. Science, 2014, 346, 1256688.	6.0	2,513
3	FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105, 1-16.	4.7	387
4	Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME Journal, 2016, 10, 885-896.	4.4	256
5	A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications, 2019, 10, 5142.	5.8	232
6	Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal solution?. Soil Biology and Biochemistry, 2014, 68, 482-493.	4.2	141
7	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	3.5	126
8	Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiology Ecology, 2012, 80, 216-235.	1.3	119
9	Host preference and network properties in biotrophic plant–fungal associations. New Phytologist, 2018, 217, 1230-1239.	3.5	107
10	Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME Journal, 2018, 12, 692-703.	4.4	100
11	Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytologist, 2015, 205, 1608-1618.	3.5	96
12	High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity, 2022, 114, 539-547.	4.7	94
13	GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data, 2020, 7, 228.	2.4	92
14	The Potential of Dark Septate Endophytes to Form Root Symbioses with Ectomycorrhizal and Ericoid Mycorrhizal Middle European Forest Plants. PLoS ONE, 2015, 10, e0124752.	1.1	92
15	Development of microbial community during primary succession in areas degraded by mining activities. Land Degradation and Development, 2017, 28, 2574-2584.	1.8	89
16	The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecology, 2013, 6, 281-292.	0.7	84
17	Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza, 2011, 21, 403-412.	1.3	78
18	Novel Root-Fungus Symbiosis in Ericaceae: Sheathed Ericoid Mycorrhiza Formed by a Hitherto Undescribed Basidiomycete with Affinities to Trechisporales. PLoS ONE, 2012, 7, e39524.	1.1	72

#	Article	IF	Citations
19	Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil. Frontiers in Microbiology, 2017, 8, 719.	1.5	71
20	Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza, 2013, 23, 11-19.	1.3	63
21	A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecology, 2013, 6, 50-64.	0.7	61
22	Tidying Up International Nucleotide Sequence Databases: Ecological, Geographical and Sequence Quality Annotation of ITS Sequences of Mycorrhizal Fungi. PLoS ONE, 2011, 6, e24940.	1.1	51
23	Root-associated fungal communities along a primary succession on a mine spoil: Distinct ecological guilds assemble differently. Soil Biology and Biochemistry, 2017, 113, 143-152.	4.2	46
24	Altered rhizoctonia assemblages in grasslands on exâ€arable land support germination of mycorrhizal generalist, not specialist orchids. New Phytologist, 2020, 227, 1200-1212.	3.5	33
25	Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats. Molecular Ecology, 2015, 24, 1831-1843.	2.0	31
26	Impact of trees and forests on the Devonian landscape and weathering processes with implications to the global Earth's system properties - A critical review. Earth-Science Reviews, 2020, 205, 103200.	4.0	29
27	PacBio sequencing of Glomeromycota rDNA: a novel amplicon covering all widely used ribosomal barcoding regions and its applicability in taxonomy and ecology of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 490-499.	3.5	29
28	Biogeography of Ericoid Mycorrhiza. Ecological Studies, 2017, , 179-193.	0.4	29
29	Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiology Ecology, 2019, 95, .	1.3	24
30	Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands. Mycorrhiza, 2017, 27, 355-367.	1.3	21
31	Interactions of saprotrophic fungi with tree roots: can we observe the emergence of novel ectomycorrhizal fungi?. New Phytologist, 2017, 215, 511-513.	3 . 5	21
32	Temporal turnover of the soil microbiome composition is guildâ€specific. Ecology Letters, 2021, 24, 2726-2738.	3.0	21
33	Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites. ISME Journal, 2020, 14, 2336-2346.	4.4	19
34	Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession. Mycorrhiza, 2017, 27, 775-789.	1.3	18
35	Early successional ectomycorrhizal fungi are more likely to naturalize outside their native range than other ectomycorrhizal fungi. New Phytologist, 2020, 227, 1289-1293.	3.5	17
36	Predictors of soil fungal biomass and community composition in temperate mountainous forests in Central Europe. Soil Biology and Biochemistry, 2021, 161, 108366.	4.2	17

#	Article	IF	Citations
37	Forest reclamation of fly ash deposit: a field study on appraisal of mycorrhizal inoculation. Restoration Ecology, 2016, 24, 184-193.	1.4	15
38	Microarthropods influence the composition of rhizospheric fungal communities by stimulating specific taxa. Soil Biology and Biochemistry, 2018, 122, 120-130.	4.2	15
39	Stand age affects fungal community composition in a Central European temperate forest. Fungal Ecology, 2020, 48, 100985.	0.7	15
40	Arbuscular mycorrhizal fungi associating with roots of Alnus and Rubus in Europe and the Middle East. Fungal Ecology, 2016, 24, 27-34.	0.7	12
41	Effect of soil moisture on root-associated fungal communities of Erica dominans in Drakensberg mountains in South Africa. Mycorrhiza, 2017, 27, 397-406.	1.3	12
42	Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots. Frontiers in Microbiology, 2021, 12, 541583.	1.5	12
43	Diverse fungal communities associated with the roots of isoetid plants are structured by host plant identity. Fungal Ecology, 2020, 45, 100914.	0.7	10
44	Response of soil fungal ecological guilds to global changes. New Phytologist, 2021, 229, 656-658.	3.5	10
45	Sympatric diploid and tetraploid cytotypes of <i>Centaurea stoebe</i> s.l. do not differ in arbuscular mycorrhizal communities and mycorrhizal growth response. American Journal of Botany, 2018, 105, 1995-2007.	0.8	9
46	Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns. Journal of Fungi (Basel, Switzerland), 2020, 6, 190.	1.5	9
47	Soil nutritional status, not inoculum identity, primarily determines the effect of arbuscular mycorrhizal fungi on the growth of Knautia arvensis plants. Mycorrhiza, 2013, 23, 561-572.	1.3	8
48	Changes in the root microbiome of four plant species with different mycorrhizal types across a nitrogen deposition gradient in ombrotrophic bogs. Soil Biology and Biochemistry, 2022, 169, 108673.	4.2	6
49	Elevation, space and host plant species structure Ericaceae root-associated fungal communities in Papua New Guinea. Fungal Ecology, 2017, 30, 112-121.	0.7	5
50	Symbiosis of isoetid plant species with arbuscular mycorrhizal fungi under aquatic versus terrestrial conditions. Mycorrhiza, 2021, 31, 273-288.	1.3	3
51	Asymmetric Interaction Between Two Mycorrhizal Fungal Guilds and Consequences for the Establishment of Their Host Plants. Frontiers in Plant Science, 0, 13, .	1.7	2